Existence of smooth solutions to the classical moment problems

Author:
Palle E. T. Jorgensen

Journal:
Trans. Amer. Math. Soc. **332** (1992), 839-848

MSC:
Primary 44A60; Secondary 42A70, 43A35, 46N99, 47A57

DOI:
https://doi.org/10.1090/S0002-9947-1992-1059709-1

MathSciNet review:
1059709

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a given sequence, and define for . If holds for all finite sequences , then it is known that there is a positive Borel measure on the circle such that , and conversely. Our main theorem provides a necessary and sufficient condition on the sequence that the measure may be chosen to be smooth. A measure is said to be smooth if it has the same spectral type as the operator acting on with respect to Haar measure on : Equivalently, is a superposition (possibly infinite) of measures of the form with such that . The condition is stated purely in terms of the initially given sequence : We show that a smooth representation exists if and only if, for some , the a *priori* estimate

**[Ak]**N. I. Akhiezer,*The classical moment problem*, Oliver and Boyd, Edinburgh and London, 1965.**[A-G]**N. I. Akhiezer and I. M. Glazman,*The theory of linear operators in Hilbert space*, vol. II, (2nd ed.), Ungar, New York, 1966.**[B-C]**Ch. Berg and J. P. R. Christensen,*Density questions in the classical theory of moments*, Ann. Inst. Fourier (Grenoble)**31**(1981), 99-114. MR**638619 (84i:44006)****[B-R]**O. Bratteli and D. W. Robinson,*Operator algebras and quantum statistical mechanics*, vol. I (2nd ed.), Springer-Verlag, New York, 1987. MR**887100 (88d:46105)****[D-S]**N. Dunford and J. T. Schwartz,*Linear operators*, Part I, Interscience, New York, 1967.**[Ha]**H. Hamburger,*Hermitian transformations of deficiency matrix*(1.1),*Jacobi matrices, and undetermined moment problems*, Amer. J. Math.**66**(1944), 489-522. MR**0011169 (6:130d)****[Jo1]**P. E. T. Jorgensen,*A uniqueness theorem for the Heisenberg-Weyl commutation relations with non-selfadjoint position operator*, Amer. J. Math.**103**(1980), 273-287. MR**610477 (82g:81033)****[Jo2]**-,*Operators and representation theory*, North-Holland, Amsterdam, 1988. MR**919948 (89e:47001)****[J-Mo]**P. E. T. Jorgensen and R. T. Moore,*Operator commutation relations*, Reidel, Dordrecht and Boston, Mass., 1984. MR**746138 (86i:22006)****[J-Mu]**P. E. T. Jorgensen and P. S. Muhly,*Self-adjoint extensions satisfying the Weyl operator commutation relations*, J. Analyse Math.**37**(1980), 46-99. MR**583632 (82k:47058)****[J-Po]**P. E. T. Jorgensen and R. T. Powers,*Positive elements for the quantum problem of moments*, Preprint, 1989.**[La1]**H. J. Landau (ed.),*Moments in mathematics*, Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1987. MR**921082 (89g:44001)****[La2]**-,*Maximum entropy and the moment problem*, Bull. Amer. Math. Soc. (N.S.)**16**(1987), 47-77. MR**866018 (88k:42010)****[Po]**R. T. Powers,*Selfadjoint algebras of unbounded operators*. II, Trans. Amer. Math. Soc.**187**(1974), 261-293. MR**0333743 (48:12067)****[We]**R. F. Werner,*Dilations of symmetric operators shifted by a unitary group*, Preprint 1989, J. Funct. Anal.**92**(1990), 166-176. MR**1064692 (92e:47068)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
44A60,
42A70,
43A35,
46N99,
47A57

Retrieve articles in all journals with MSC: 44A60, 42A70, 43A35, 46N99, 47A57

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1059709-1

Article copyright:
© Copyright 1992
American Mathematical Society