Existence of smooth solutions to the classical moment problems

Author:
Palle E. T. Jorgensen

Journal:
Trans. Amer. Math. Soc. **332** (1992), 839-848

MSC:
Primary 44A60; Secondary 42A70, 43A35, 46N99, 47A57

MathSciNet review:
1059709

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a given sequence, and define for . If holds for all finite sequences , then it is known that there is a positive Borel measure on the circle such that , and conversely. Our main theorem provides a necessary and sufficient condition on the sequence that the measure may be chosen to be smooth. A measure is said to be smooth if it has the same spectral type as the operator acting on with respect to Haar measure on : Equivalently, is a superposition (possibly infinite) of measures of the form with such that . The condition is stated purely in terms of the initially given sequence : We show that a smooth representation exists if and only if, for some , the a *priori* estimate

**[Ak]**N. I. Akhiezer,*The classical moment problem*, Oliver and Boyd, Edinburgh and London, 1965.**[A-G]**N. I. Akhiezer and I. M. Glazman,*The theory of linear operators in Hilbert space*, vol. II, (2nd ed.), Ungar, New York, 1966.**[B-C]**Ch. Berg and J. P. R. Christensen,*Density questions in the classical theory of moments*, Ann. Inst. Fourier (Grenoble)**31**(1981), no. 3, vi, 99–114 (English, with French summary). MR**638619****[B-R]**Ola Bratteli and Derek W. Robinson,*Operator algebras and quantum statistical mechanics. 1*, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1987. 𝐶*- and 𝑊*-algebras, symmetry groups, decomposition of states. MR**887100****[D-S]**N. Dunford and J. T. Schwartz,*Linear operators*, Part I, Interscience, New York, 1967.**[Ha]**Hans Ludwig Hamburger,*Hermitian transformations of deficiency-index (1,1), Jacobi matrices and undetermined moment problems*, Amer. J. Math.**66**(1944), 489–522. MR**0011169****[Jo1]**Palle E. T. Jørgensen,*A uniqueness theorem for the Heisenberg-Weyl commutation relations with nonselfadjoint position operator*, Amer. J. Math.**103**(1981), no. 2, 273–287. MR**610477**, 10.2307/2374217**[Jo2]**Palle E. T. Jorgensen,*Operators and representation theory*, North-Holland Mathematics Studies, vol. 147, North-Holland Publishing Co., Amsterdam, 1988. Canonical models for algebras of operators arising in quantum mechanics; Notas de Matemática [Mathematical Notes], 120. MR**919948****[J-Mo]**Palle E. T. Jorgensen and Robert T. Moore,*Operator commutation relations*, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1984. Commutation relations for operators, semigroups, and resolvents with applications to mathematical physics and representations of Lie groups. MR**746138****[J-Mu]**Palle T. Jørgensen and Paul S. Muhly,*Selfadjoint extensions satisfying the Weyl operator commutation relations*, J. Analyse Math.**37**(1980), 46–99. MR**583632**, 10.1007/BF02797680**[J-Po]**P. E. T. Jorgensen and R. T. Powers,*Positive elements for the quantum problem of moments*, Preprint, 1989.**[La1]**H. J. Landau,*Classical background of the moment problem*, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 1–15. MR**921082**, 10.1090/psapm/037/921082**[La2]**H. J. Landau,*Maximum entropy and the moment problem*, Bull. Amer. Math. Soc. (N.S.)**16**(1987), no. 1, 47–77. MR**866018**, 10.1090/S0273-0979-1987-15464-4**[Po]**Robert T. Powers,*Selfadjoint algebras of unbounded operators. II*, Trans. Amer. Math. Soc.**187**(1974), 261–293. MR**0333743**, 10.1090/S0002-9947-1974-0333743-8**[We]**Reinhard F. Werner,*Dilations of symmetric operators shifted by a unitary group*, J. Funct. Anal.**92**(1990), no. 1, 166–176. MR**1064692**, 10.1016/0022-1236(90)90073-T

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
44A60,
42A70,
43A35,
46N99,
47A57

Retrieve articles in all journals with MSC: 44A60, 42A70, 43A35, 46N99, 47A57

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1992-1059709-1

Article copyright:
© Copyright 1992
American Mathematical Society