Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonsingular affine $ k\sp *$-surfaces


Author: Jean Rynes
Journal: Trans. Amer. Math. Soc. 332 (1992), 889-921
MSC: Primary 14L30; Secondary 14J50
DOI: https://doi.org/10.1090/S0002-9947-1992-1062868-8
MathSciNet review: 1062868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonsingular affine $ {k^{\ast} }$-surfaces are classified as certain invariant open subsets of projective $ {k^{\ast}}$-surfaces. A graph is defined which is an equivariant isomorphism invariant of an affine $ {k^{\ast}}$-surface. Over the complex numbers, it is proved that the only acyclic affine surface which admits an effective action of the group $ {{\mathbf{C}}^{\ast} }$ is $ {{\mathbf{C}}^2}$ which admits only linear actions of $ {{\mathbf{C}}^{\ast}}$.


References [Enhancements On Off] (What's this?)

  • [B1] A. Bialynicki-Birula, Remarks on the action of an algebraic torus on $ {k^n}$. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 123-125. MR 0215831 (35:6666)
  • [B2] -, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973), 480-497. MR 0366940 (51:3186)
  • [BH] H. Bass and W. Haboush, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482. MR 808732 (87d:14039)
  • [FK] K. Fieseler and L. Kaup, Intersection homology and exceptional orbits of $ {{\mathbf{C}}^{\ast} }$-surfaces, preprint (1988).
  • [G] J. E. Goodman, Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. 89 (1969), 160-183. MR 0242843 (39:4170)
  • [H1] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag, 1977. MR 0463157 (57:3116)
  • [H2] -, Ample subvarieties of algebraic varieties, Lecture Notes in Math., vol. 156, Springer-Verlag, 1970. MR 0282977 (44:211)
  • [H3] R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, Algebraic Geometry, Arcata 1974, Proc. Sympos. Pure Math., vol. 29, Amer. Math. Soc., Providence, R.I., 1975, pp. 129-164. MR 0369359 (51:5592)
  • [Hu] J. Humphreys, Linear algebraic groups, Graduate Texts in Math., 21, Springer-Verlag,, 1975. MR 0396773 (53:633)
  • [KR] T. Kambayashi and P. Russell, On linearizing algebraic torus actions, J. Pure Appl. Algebra 23 (1982), 243-250. MR 644276 (83d:14027)
  • [K] H. Kraft, Geometrische Methoden in der Invariantentheorie, Vieweg, Braunscheig, 1985. MR 768181 (86j:14006)
  • [La] D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128. MR 0254100 (40:7310)
  • [Lu1] D. Luna, Slices étales, Bull. Soc. Math. France 33 (1973), 81-105. MR 0342523 (49:7269)
  • [Lu2] D. Luna, Sur les orbites fermées des groups algébrique réductifs, Invent. Math. 16 (1972), 1-5. MR 0294351 (45:3421)
  • [M] J. Milnor, Morse theory, Ann. of Math. Stud., no. 51, Princeton Univ. Press, 1969.
  • [MF] D. Mumford and J. Fogarty, Geometric invariant theory, Benjamin, 1969. MR 0240104 (39:1458)
  • [OW] P. Orlik and P. Wagreich, Algebraic surfaces with $ {k^{\ast}}$-actions, Acta Math. 138 (1977), 43-81. MR 0460342 (57:336)
  • [S] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28. MR 0337963 (49:2732)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14L30, 14J50

Retrieve articles in all journals with MSC: 14L30, 14J50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1062868-8
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society