Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Spectral multiplicity for $ {\rm Gl}\sb n({\bf R})$

Author: Jonathan Huntley
Journal: Trans. Amer. Math. Soc. 332 (1992), 875-888
MSC: Primary 11F72; Secondary 11F46, 11F55, 22E30, 58G25
MathSciNet review: 1102223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the behavior of the cuspidal spectrum of $ \Gamma \backslash \mathcal{H}$, where $ \mathcal{H}$ is associated to $ \operatorname{Gl}_n(R)$ and $ \Gamma $ is cofinite but not compact. By a technique that modifies the Lax-Phillips technique and uses ideas from wave equation techniques, if $ r$ is the dimension of $ \mathcal{H}$, $ {N_\alpha }(\lambda )$ is the counting function for the Laplacian attached to a Hilbert space $ {H_\alpha }$, $ {M_\alpha }(\lambda )$ is the multiplicity function, and $ {H_0}$ is the space of cusp forms, we obtain the following results:

Theorem 1. There exists a space of functions $ {H^1}$, containing all cusp forms, such that

$\displaystyle N\prime(\lambda ) = {C_r}({\text{Vol}}\;X){\lambda ^{\frac{r} {2}... ...{\frac{{r - 1}} {2}}}{\lambda ^{\frac{1} {{n + 1}}}}{(\log \lambda )^{n - 1}}).$

Theorem 2.

$\displaystyle {M_0}(\lambda ) = O({\lambda ^{\frac{{r - 1}} {2}}}{\lambda ^{\frac{1} {{n + 1}}}}{(\log \lambda )^{n - 1}}).$

References [Enhancements On Off] (What's this?)

  • [Ag] S. Agmon, On kernals, eigenvalues and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math. 18 (1965), 627-663. MR 0198287 (33:6446)
  • [C-H] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, Wiley-Interscience, 1953. MR 0065391 (16:426a)
  • [Co] R. Courant, Über die Eigen bei den Differentialgleichungen der mathematicschen Physik, Math. Z. 7 (1920), 1-57. MR 1544417
  • [D1] H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geom. 11 (1982), 239-255. MR 664496 (83m:58079)
  • [Gr] D. Grenier, Fundamental domains for the general linear group, Pacific J. Math. 132 (1988), 293-317. MR 934172 (89d:11055)
  • [H-T] J. Huntley and D. Tepper, A local Weyl's law, the angular distribution and multiplicity of cusp forms on product spaces, Trans. Amer. Math. Soc. 330 (1992), 97-110. MR 1053114 (92f:11071)
  • [Ho] L. Hörmander, The spectral function of elliptic operator, Acta Math. 121 (1968), 193-218 MR 0609014 (58:29418)
  • [Hu1] J. Huntley, Multiplicity on products of hyperbolic spaces, Proc. Amer. Math. Soc. 111 (1991), 1-12. MR 1031667 (91d:11055)
  • [L-P] P. Lax and R. Philips, Scattering theory for automorphic forms, Princeton Univ. Press, Princeton, N.J., 1974.
  • [M-P] S. Minakshisundaran and A. Pleijel, Some properties of eigenfunctions of the Laplace operator on Riemannian manifolds, Canad. J. Math. 11 (1949), 243-256. MR 0031145 (11:108b)
  • [Ma] G. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Transl. 109 (1977) 33-45.
  • [Se] R. Seeley, An estimate near the boundary for the spectral function of the Laplace operator, Amer. J. Math 102 (1980), 869-902. MR 590638 (82k:58097)
  • [Te] A. Terras, Harmonic analysis on symmetric spaces and applications. II, Springer-Verlag, New York, 1988. MR 955271 (89k:22017)
  • [We] H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1911), 110-117.
  • [Zi] R. Zimmer, Ergodic theory and semisimple groups, Birkhäuser, Boston, Mass., 1984. MR 776417 (86j:22014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F72, 11F46, 11F55, 22E30, 58G25

Retrieve articles in all journals with MSC: 11F72, 11F46, 11F55, 22E30, 58G25

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society