Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

$ N$-body observables in the Calkin algebra


Author: Jan Dereziński
Journal: Trans. Amer. Math. Soc. 332 (1992), 571-582
MSC: Primary 81U10; Secondary 35J10, 46L60, 47A40, 47F05, 47N50, 81Q20
MathSciNet review: 1117217
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The commutators of many operators which are used in the phase space analysis of the $ N$-body scattering are compact. This fact makes it possible to give a description of certain classes of such operators in terms of commutative $ {C^{\ast} }$-algebras inside the Calkin algebra.


References [Enhancements On Off] (What's this?)

  • [A] Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of 𝑁-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
  • [ABG] W. O. Amrein, A.-M. Boutet de Monvel-Berthier, and V. Georgescu, On Mourre’s approach to spectral theory, Helv. Phys. Acta 62 (1989), no. 1, 1–20. MR 991005
  • [CFKS] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
  • [De1] Jan Dereziński, A new proof of the propagation theorem for 𝑁-body quantum systems, Comm. Math. Phys. 122 (1989), no. 2, 203–231. MR 994502
  • [De2] -, Asymptotic observables in the long range $ N$-body scattering theory, Proc. Summer School in Brasov, 1989 (to appear).
  • [Di] Jacques Dixmier, Les 𝐶*-algèbres et leurs représentations, Deuxième édition. Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). MR 0246136
  • [E2] Volker Enss, A note on Hunziker’s theorem, Comm. Math. Phys. 52 (1977), no. 3, 233–238. MR 0446195
  • [E2] Volker Enss, Quantum scattering theory for two- and three-body systems with potentials of short and long range, Schrödinger operators (Como, 1984) Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 39–176. MR 824987, 10.1007/BFb0080332
  • [E3] Volker Enss, Introduction to asymptotic observables for multiparticle quantum scattering, Schrödinger operators, Aarhus 1985, Lecture Notes in Math., vol. 1218, Springer, Berlin, 1986, pp. 61–92. MR 869596, 10.1007/BFb0073044
  • [Graf] G. M. Graf, Asymptotic completeness for $ N$-body short-range systems: a new proof, preprint, 1989.
  • [Hu] Walter Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta 39 (1966), 451–462. MR 0211711
  • [RS1] Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429
  • [RS2] Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • [Sig] I. M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), no. 2, 309–324. MR 676004
  • [SigSof] I. M. Sigal and A. Soffer, The 𝑁-particle scattering problem: asymptotic completeness for short-range systems, Ann. of Math. (2) 126 (1987), no. 1, 35–108. MR 898052, 10.2307/1971345
  • [Sim] Barry Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), no. 3, 259–274. MR 0496073
  • [Ta] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
  • [VW] Clasine van Winter, Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964), no. 8, 60 pp. (1964). MR 0201168
  • [Zhi] G. M. Zhislin, Investigations of the spectrum of the Schrödinger operator for a many body system, Trudy Moskov. Mat. Obshch. 9 (1960), 81-128.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 81U10, 35J10, 46L60, 47A40, 47F05, 47N50, 81Q20

Retrieve articles in all journals with MSC: 81U10, 35J10, 46L60, 47A40, 47F05, 47N50, 81Q20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1992-1117217-3
Article copyright: © Copyright 1992 American Mathematical Society