Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ N$-body observables in the Calkin algebra


Author: Jan Dereziński
Journal: Trans. Amer. Math. Soc. 332 (1992), 571-582
MSC: Primary 81U10; Secondary 35J10, 46L60, 47A40, 47F05, 47N50, 81Q20
DOI: https://doi.org/10.1090/S0002-9947-1992-1117217-3
MathSciNet review: 1117217
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The commutators of many operators which are used in the phase space analysis of the $ N$-body scattering are compact. This fact makes it possible to give a description of certain classes of such operators in terms of commutative $ {C^{\ast} }$-algebras inside the Calkin algebra.


References [Enhancements On Off] (What's this?)

  • [A] S. Agmon, Lectures on the exponential decay of solutions of second order elliptic equations, Princeton Univ. Press, Princeton, N.J., 1982. MR 745286 (85f:35019)
  • [ABG] W. O. Amrein, A. M. Boutet de Monvel-Berthier, and V. Georgescu, Notes on the $ N$-body problem, preprint, Geneve, 1989. MR 991005 (90f:47031)
  • [CFKS] H. L. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger operators with applications to quantum mechanics and global geometry, Springer, Berlin-Heidelberg-New York, 1987. MR 883643 (88g:35003)
  • [De1] J. Dereziński, A new proof of the propagation theorem for $ N$-body quantum systems, Comm. Math. Phys. 122 (1989), 203-231. MR 994502 (91a:81218)
  • [De2] -, Asymptotic observables in the long range $ N$-body scattering theory, Proc. Summer School in Brasov, 1989 (to appear).
  • [Di] J. Dixmier, Les $ {C^{\ast} }$-algebres et leurs representations, Gauthier-Villars, Paris, 1969. MR 0246136 (39:7442)
  • [E2] V. Enss, A note on Hunziker's theorem, Comm. Math. Phys. 52 (1977), 233-238. MR 0446195 (56:4524)
  • [E2] -, Quantum scattering theory of two- and three-body systems with potentials of short and long range, Schrödinger Operators (S. Graffi, ed.), Lecture Notes in Math., vol. 1159, Springer, Berlin-Heidelberg-New York, 1985. MR 824987 (87c:81169)
  • [E3] -, Introduction to asymptotic observables for multiparticle quantum scattering, Proc. Sympos. Schrödinger Operators (Aarhus, 1985), (E. Balslev, ed.), Lecture Notes in Math., Springer, 1986. MR 869596 (88g:81135)
  • [Graf] G. M. Graf, Asymptotic completeness for $ N$-body short-range systems: a new proof, preprint, 1989.
  • [Hu] W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta 39 (1966), 451-462. MR 0211711 (35:2588)
  • [RS1] M. Reed and B. Simon, Methods of modern mathematical physics. III: Scattering theory, Academic Press, London, 1979. MR 529429 (80m:81085)
  • [RS2] -, Methods of modern mathematical physics. IV: Analysis of operators, Academic Press, London, 1978. MR 0493421 (58:12429c)
  • [Sig] I. M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), 309-324. MR 676004 (83m:81117)
  • [SigSof] I. M. Sigal and A. Soffer, The $ N$-particle scattering problem: asymptotic completeness for short range systems, Anal. Math. 125 (1987), 35-108. MR 898052 (88m:81137)
  • [Sim] B. Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), 259-274; Math. Phys. 58 (1978) 205-210. MR 0496073 (58:14691a)
  • [Ta] M. Takesaki, Theory of operator algebras. I, Springer, Berlin-Heidelberg-New York, 1979. MR 548728 (81e:46038)
  • [VW] C. Van Winter, Theory of finite systems of particles. I, Mat. Fys. Skr. Danske Vid. Selsk. 1 (1964), 1-60. MR 0201168 (34:1052)
  • [Zhi] G. M. Zhislin, Investigations of the spectrum of the Schrödinger operator for a many body system, Trudy Moskov. Mat. Obshch. 9 (1960), 81-128.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 81U10, 35J10, 46L60, 47A40, 47F05, 47N50, 81Q20

Retrieve articles in all journals with MSC: 81U10, 35J10, 46L60, 47A40, 47F05, 47N50, 81Q20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1117217-3
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society