Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some integrable subalgebras of the Lie algebras of infinite-dimensional Lie groups


Author: J. Leslie
Journal: Trans. Amer. Math. Soc. 333 (1992), 423-443
MSC: Primary 22E65; Secondary 17B65
DOI: https://doi.org/10.1090/S0002-9947-1992-1059710-8
MathSciNet review: 1059710
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a proof of Lie's second fundamental theorem in the context of infinite dimensional Lie groups; that is, we define a class of Lie subalgebras of the Lie algebra of a large class of infinite dimensional Lie groups, say $ G$ , which can be realized as the Lie algebras of Lie subgroups of $ G$ .


References [Enhancements On Off] (What's this?)

  • [1] M. Adams, T. S. Ratiu, and R. A. Schmid, A Lie group structure in pseudodifferential operators, Math. Ann. 273 (1986), 529-551. MR 826458 (88c:58067)
  • [2] V. L. Averbuck and O. G. Smolyanov, The theory of differentiation in linear topological spaces, Russian Math. Surveys 22 (1967), 201-258.
  • [3] N. Bourbaki, Espaces vectorielles topologiques, Masson, 1981. MR 633754 (83k:46003)
  • [4] J. F. Colombeau, Sur les equations différentielles dans les espaces vectoriels topologiques ou bornologiques, Rev. Roumaine Math. Pures Appl. 22 (1975). MR 0383076 (52:3957)
  • [5] J. Dieudonné, Foundations of modern analysis, Academic Press, 1960. MR 0120319 (22:11074)
  • [6] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102-163. MR 0271984 (42:6865)
  • [7] I. M. Gelfand, M. I. Graev and A. M. Vershik, Models of representations of current groups, Representations of Lie Groups and Lie Algebras (A. A. Kirillov, ed.), Akad. Kiadó, Budapest, 1985. MR 829048 (88a:22032)
  • [8] H. Hogbe-Nlend, Bornologies and functional analysis, Math. Studies, no. 26, North-Holland, 1977. MR 0500064 (58:17774)
  • [9] O. Kobayashi, Y. Maeda, H. Omori, and A. Yoshioka, On regular Fréchei-Lie groups. IV, Tokyo J. Math. 5 (1981).
  • [10] J. Leslie, On a differential structure for the group of diffeomorphism, Topology 6 (1967), 264-271. MR 0210147 (35:1041)
  • [11] -, On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc. 274 (1982). MR 675073 (85e:58012)
  • [12] -, On the subgroups of infinite dimensional Lie groups, Bull. Amer. Math. Soc. (N.S.) 16 (1987).
  • [13] -, Some Frobenius theorems in global analysis, J. Differential Geom. 2 (1968) MR 0251750 (40:4977)
  • [14] J. Milnor, On infinite dimensional Lie groups, September 1982 (unpublished).
  • [15] -, Remarks on infinite dimensional Lie groups, Proc. Summer School on Quantum Gravity, 1983.
  • [16] H. Omori, Groups of diffeomorphisms and their subgroups, Trans. Amer. Math. Soc. 178 (1973). MR 0377975 (51:14144)
  • [17] A. Pressley and G. Segal, Loop groups, Oxford Science Publ., 1986. MR 900587 (88i:22049)
  • [18] H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiquesréels, Comment. Math. Helv. 33 (1959). MR 0102094 (21:889)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E65, 17B65

Retrieve articles in all journals with MSC: 22E65, 17B65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1059710-8
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society