Connected simple systems, transition matrices, and heteroclinic bifurcations

Authors:
Christopher McCord and Konstantin Mischaikow

Journal:
Trans. Amer. Math. Soc. **333** (1992), 397-422

MSC:
Primary 58F14; Secondary 34C23, 34C35, 58F25

DOI:
https://doi.org/10.1090/S0002-9947-1992-1059711-X

MathSciNet review:
1059711

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given invariant sets , , and , and connecting orbits and , we state very general conditions under which they bifurcate to produce an connecting orbit. In particular, our theorem is applicable in settings for which one has an admissible semiflow on an isolating neighborhood of the invariant sets and the connecting orbits, and for which the Conley index of the invariant sets is the same as that of a hyperbolic critical point. Our proof depends on the connected simple system associated with the Conley index for isolated invariant sets. Furthermore, we show how this change in connected simple systems can be associated with transition matrices, and hence, connection matrices. This leads to some simple examples in which the nonuniqueness of the connection matrix can be explained by changes in the connected simple system.

**[CDT]**S.-N. Chow, B. Deng and D. Terman,*The bifurcation of a homoclinic orbit*--*a topological approach*, preprint CDSNS90-12.**[C]**C. Conley,*Isolated invariant sets and the Morse index*, CBMS Regional Conf. Ser. in Math. no. 38, Amer. Math. Soc., Providence, R.I., 1978. MR**511133 (80c:58009)****[F1]**R. Franzosa,*Index filtrations and the homology index braid for partially ordered Morse decompositions*, Trans. Amer. Math. Soc.**298**(1986), 193-213. MR**857439 (88a:58121)****[F2]**-,*The connection matrix theory for Morse decompositions*, Trans. Amer. Math. Soc.**311**(1989), 561-592. MR**978368 (90a:58149)****[F3]**-,*The continuation theory for Morse decompositions and connection matrices*, Trans. Amer. Math. Soc.**310**(1988), 781-803. MR**973177 (90g:58111)****[FM]**R. Franzosa and K. Mischaikow,*The connection matrix theory for semiflows on*(*not necessarily locally compact*)*metric spaces*, J. Differential Equations**71**(2) (1988), 270-287. MR**927003 (89c:54078)****[K]**H. Kokubu,*Homoclinic and heteroclinic bifurcations of vector fields*, Japan J. Appl. Math.**5**(1988), 455-501. MR**965875 (90b:58205)****[Ku1]**H. Kurland,*The Morse index of an isolated invariant set is a connected simple system*, J. Differential Equations**42**(1981). MR**641650 (83a:58077)****[Ku2]**-,*Homotopy invariants of repeller attractor paris*, I.*The Puppe sequence of an**pair*, J. Differential Equations**46**(1982).**[Ku3]**-,*Homotopy invariants of repeller attractor pairs*, II.*Continuation of**pairs*, J. Differential Equations**49**(1983).**[M1]**K. Mischaikow,*Existence of generalized homoclinic orbits for one-parameter families of flows*, Proc. Amer. Math. Soc.**103**(1989), 59-68. MR**938645 (89h:58147)****[M2]**-,*Transition systems*, Proc. Roy. Soc. Edinburgh Sect. A**112**(1989), 155-175. MR**1007542 (91b:58215)****[Mo]**R. Moeckel,*Morse decompositions and connection matrices*, Ergodic Theory Dynamical Systems**8**(1988), 227-250. MR**967640 (89k:58249)****[R]**J. Reineck,*Connecting orbits in one-parameter families of flows*, Ergodic Theory Dynamical Systems**8**(1988), 359-374. MR**967644 (89i:58128)****[Ry]**K. Rybakowski,*The homotopy index and partial differential equations*, Universitext, Springer-Verlag, 1987. MR**910097 (89d:58025)****[S]**D. Salamon,*Connected simple systems and the Conley index of isolated invariant sets*, Trans. Amer. Math. Soc.**291**(1985). MR**797044 (87e:58182)****[Sm]**J. Smoller,*Shock waves and reaction diffusion equations*, Springer-Verlag, Berlin and New York, 1983. MR**688146 (84d:35002)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F14,
34C23,
34C35,
58F25

Retrieve articles in all journals with MSC: 58F14, 34C23, 34C35, 58F25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1059711-X

Keywords:
Bifurcations,
Conley index,
connection matrices,
connected simple systems,
heteroclinic orbits,
transition matrices

Article copyright:
© Copyright 1992
American Mathematical Society