Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Examples of capacity for some elliptic operators


Author: Jang-Mei Wu
Journal: Trans. Amer. Math. Soc. 333 (1992), 379-395
MSC: Primary 35J15; Secondary 31B15, 31B35
DOI: https://doi.org/10.1090/S0002-9947-1992-1062196-0
MathSciNet review: 1062196
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study $ L$-capacities for uniformly elliptic operators of nondivergence form

$\displaystyle L = \sum\limits_{i,j} {{a_{ij}}(x)\frac{{{\partial ^2}}} {{\parti... ...rtial {x_j}}} + } \sum\limits_j {{a_j}(x)\frac{\partial } {{\partial {x_j}}};} $

and construct examples of large sets having zero $ L$-capacity for some $ L$ , and small sets having positive $ L$-capacity. The relations between ellipticity constants of the coefficients and the sizes of these sets are also considered.

References [Enhancements On Off] (What's this?)

  • [1] A. Ancona, Principe de Harnack a la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier (Grenoble) 28 (1978), 169-213. MR 513885 (80d:31006)
  • [2] P. Bauman, Equivalence of the Green's functions for diffusion operators in $ {\mathbb{R}^n}$: a counter-example, Proc. Amer. Math. Soc. 91 (1984), 64-68. MR 735565 (85d:35026)
  • [3] -, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153-173. MR 765409 (86m:35008)
  • [4] -, A Wiener test for nondivergence structure, second-order elliptic equations, Indiana Univ. Math. J. 34 (1985), 825-844. MR 808829 (87b:35047)
  • [5] D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math. 4 (1955-56), 309-340. MR 0081416 (18:399a)
  • [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, 1983. MR 737190 (86c:35035)
  • [7] N. V. Krylov, The first boundary-value problem for second-order elliptic equations, Differentsial'nye Uravneniya 3 (1967), 315-326; English transl., Differential Equations 3 (1967), 158-164. MR 0212353 (35:3226)
  • [8] E. M. Landis, $ s$-capacity and its applications to the study of solutions of a second-order elliptic equation with discontinuous coefficients, Mat. Sb. 76 (1968), 186-213; English transl., Math. USSR-Sb. 5 (1968), 177-204. MR 0227607 (37:3191)
  • [9] G. Lieberman, A generalization of the flat cone condition for regularity of solutions of elliptic equations, Proc. Amer. Math. Soc. 100 (1987), 289-294. MR 884468 (88m:35017)
  • [10] W. Littman, G. Stampacchia, and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 45-79. MR 0161019 (28:4228)
  • [11] K. Miller, Exceptional boundary points for the nondivergence equation which are regular for the Laplace equation--and vice-versa, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 315-330. MR 0229961 (37:5527)
  • [12] -, Nonequivalence of regular boundary points for the Laplace and nondivergence equations, even with continuous coefficients, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 159-163. MR 0262677 (41:7282)
  • [13] O. N. Zograf, Example of a second-order elliptic equation with continuous coefficients for which the regularity conditions of a boundary point for the Dirichlet problem differ from the analogous conditions for the Laplace equation, Vestnik Moskov. Univ. Mat. 24 (1969), 30-39; English transl., Moscow Univ. Math. Bull. 24 (1969), 34-38. MR 0255981 (41:641)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J15, 31B15, 31B35

Retrieve articles in all journals with MSC: 35J15, 31B15, 31B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1062196-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society