Examples of capacity for some elliptic operators

Author:
Jang-Mei Wu

Journal:
Trans. Amer. Math. Soc. **333** (1992), 379-395

MSC:
Primary 35J15; Secondary 31B15, 31B35

DOI:
https://doi.org/10.1090/S0002-9947-1992-1062196-0

MathSciNet review:
1062196

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study -capacities for uniformly elliptic operators of nondivergence form

**[1]**A. Ancona,*Principe de Harnack a la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien*, Ann. Inst. Fourier (Grenoble)**28**(1978), 169-213. MR**513885 (80d:31006)****[2]**P. Bauman,*Equivalence of the Green's functions for diffusion operators in*:*a counter-example*, Proc. Amer. Math. Soc.**91**(1984), 64-68. MR**735565 (85d:35026)****[3]**-,*Positive solutions of elliptic equations in nondivergence form and their adjoints*, Ark. Mat.**22**(1984), 153-173. MR**765409 (86m:35008)****[4]**-,*A Wiener test for nondivergence structure, second-order elliptic equations*, Indiana Univ. Math. J.**34**(1985), 825-844. MR**808829 (87b:35047)****[5]**D. Gilbarg and J. Serrin,*On isolated singularities of solutions of second order elliptic differential equations*, J. Analyse Math.**4**(1955-56), 309-340. MR**0081416 (18:399a)****[6]**D. Gilbarg and N. S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Springer-Verlag, 1983. MR**737190 (86c:35035)****[7]**N. V. Krylov,*The first boundary-value problem for second-order elliptic equations*, Differentsial'nye Uravneniya**3**(1967), 315-326; English transl., Differential Equations**3**(1967), 158-164. MR**0212353 (35:3226)****[8]**E. M. Landis, -*capacity and its applications to the study of solutions of a second-order elliptic equation with discontinuous coefficients*, Mat. Sb.**76**(1968), 186-213; English transl., Math. USSR-Sb.**5**(1968), 177-204. MR**0227607 (37:3191)****[9]**G. Lieberman,*A generalization of the flat cone condition for regularity of solutions of elliptic equations*, Proc. Amer. Math. Soc.**100**(1987), 289-294. MR**884468 (88m:35017)****[10]**W. Littman, G. Stampacchia, and H. Weinberger,*Regular points for elliptic equations with discontinuous coefficients*, Ann. Scuola Norm. Sup. Pisa (3)**17**(1963), 45-79. MR**0161019 (28:4228)****[11]**K. Miller,*Exceptional boundary points for the nondivergence equation which are regular for the Laplace equation*--*and vice-versa*, Ann. Scuola Norm. Sup. Pisa (3)**22**(1968), 315-330. MR**0229961 (37:5527)****[12]**-,*Nonequivalence of regular boundary points for the Laplace and nondivergence equations, even with continuous coefficients*, Ann. Scuola Norm. Sup. Pisa (3)**24**(1970), 159-163. MR**0262677 (41:7282)****[13]**O. N. Zograf,*Example of a second-order elliptic equation with continuous coefficients for which the regularity conditions of a boundary point for the Dirichlet problem differ from the analogous conditions for the Laplace equation*, Vestnik Moskov. Univ. Mat.**24**(1969), 30-39; English transl., Moscow Univ. Math. Bull.**24**(1969), 34-38. MR**0255981 (41:641)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J15,
31B15,
31B35

Retrieve articles in all journals with MSC: 35J15, 31B15, 31B35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1062196-0

Article copyright:
© Copyright 1992
American Mathematical Society