Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The level manifold of a generalized Toda equation hierarchy


Author: Yoshimasa Nakamura
Journal: Trans. Amer. Math. Soc. 333 (1992), 83-94
MSC: Primary 58F07
DOI: https://doi.org/10.1090/S0002-9947-1992-1062867-6
MathSciNet review: 1062867
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The finite nonperiodic Toda lattice equation induces a linear one-parameter flow on a space of rational functions. The level manifold of the Toda equation hierarchy is shown to be a product of lines. Our main results establish a generalization of this Toda hierarchy which will be called the cyclic-Toda hierarchy. It is proved that the cyclic-Toda hierarchy is completely integrable and its level manifold is diffeomorphic to a disjoint union of cylinders.


References [Enhancements On Off] (What's this?)

  • [AKN] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Dynamical Systems III (V. I. Arnold, ed.), Encyclopedia of Math. Sci., vol. 3, Springer-Verlag, Berlin, 1988. MR 2269239 (2008a:70001)
  • [B] R. W. Brockett, Some geometrical questions in the theory of systems, IEEE Trans. Automat. Control 21 (1976), 449-455. MR 0469386 (57:9177b)
  • [DKJM] E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, Transformation groups for soliton equations, Non-Linear Integrable Systems--Classical Theory and Quantum Theory (M. Jimbo and T. Miwa, eds.), World Scientific, Singapore, 1983, pp. 39-119. MR 725700 (86a:58093)
  • [DLNT] P. Deift, L. C. Li, T. Nanda, and C. Tomei, The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math. 39 (1986), 183-232. MR 820068 (87c:58045)
  • [DLT] P. Deift, L. C. Li, and C. Tomei, Matrix factorizations and integrable systems, Comm. Pure Appl. Math. 42 (1989), 443-521. MR 990138 (92a:58062)
  • [DLuTr] P. Deift, F. Lund, and E. Trobowitz, Nonlinear wave equations and constrained harmonic motion, Comm. Math. Phys. 74 (1980), 141-188. MR 576269 (82g:35102)
  • [D] S. K. Donaldson, Nahm's equations and the classification of monopoles, Commun. Math. Phys. 96 (1984), 387-407. MR 769355 (86c:58039)
  • [F] H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. D 9 (1974), 1924-1925. MR 0408647 (53:12411)
  • [G] F. R. Gantmacher, The theory of matrices, Chelsea, New York, 1959.
  • [I] V. I. Inozemtsev, The finite Toda lattices, Comm. Math. Phys. 121 (1989), 629-638. MR 990995 (90f:58086)
  • [K] P. S. Krishnaprasad, Symplectic mechanics and rational functions, Richerche Automat. 10 (1979), 107-135. MR 614258 (84c:58039)
  • [KM] P. S. Krishnaprasad and C. F. Martin, On families of systems and deformations, Internat. J. Control 38 (1983), 1055-1079. MR 722212 (85e:93014)
  • [M] J. Moser, Finitely many points on the line under the influence of an exponential potential--An integrable system, Dynamical Systems, Theory and Applications (J. Moser, ed.), Lecture Notes in Phys., vol. 38, Springer-Verlag, Berlin, 1975, pp. 467-497. MR 0455038 (56:13279)
  • [MV] J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys. 139 (1991), 217-243. MR 1120138 (92g:58054)
  • [N$ _{1}$] Y. Nakamura, Moduli space of $ SU(2)$ monopoles and the complex cyclic-Toda hierarchy, Comm. Math. Phys. 128 (1990), 509-520. MR 1045881 (91g:58040)
  • [N$ _{2}$] -, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal. 22 (1991), 1744-1754. MR 1129408 (92k:58121)
  • [N$ _{3}$] -, Transformation group acting on a self-dual Yang-Mills hierarchy, J. Math. Phys. 29 (1988), 244-248. MR 921789 (88m:58083)
  • [SS] M. Sato and Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifold, Nonlinear PDE in Applied Science (Proc. U.S.-Japan Seminar, Tokyo 1982) (H. Fujita, P. D. Lax, and G. Strang, eds.), Lecture Notes Numer. Appl. Anal., vol. 5, Kinokuniya, Tokyo, 1983, pp. 259-271. MR 730247 (86m:58072)
  • [S] W. W. Symes, The $ QR$ algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D 4 (1982), 275-280. MR 653781 (83h:58053)
  • [T] K. Takasaki, Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras, Comm. Math. Phys. 127 (1990), 225-238. MR 1037101 (91b:58281)
  • [To] C. Tomei, The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J. 51 (1984), 981-996. MR 771391 (86d:58091)
  • [UT] K. Ueno and K. Takasaki, Toda lattice hierarchy, Group Representations and Systems of Differential Equations (K. Okamoto, ed.), Adv. Stud, in Pure Math. vol. 4, Kinokuniya, Tokyo, 1984, pp. 1-95. MR 810623 (88a:58099a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F07

Retrieve articles in all journals with MSC: 58F07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1062867-6
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society