Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An analogue of Siegel's $ \phi$-operator for automorphic forms for $ {\rm GL}\sb n({\bf Z})$


Author: Douglas Grenier
Journal: Trans. Amer. Math. Soc. 333 (1992), 463-477
MSC: Primary 11F55; Secondary 11F32, 11F70
DOI: https://doi.org/10.1090/S0002-9947-1992-1066443-0
MathSciNet review: 1066443
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \mathcal{S}{P_n}$ is the symmetric space of $ n \times n$ positive matrices, $ Y \in \mathcal{S}{P_n}$ can be decomposed into

$\displaystyle Y = \left( {\begin{array}{*{20}{c}} 1 & 0 \\ x & I \\ \end{array}... ...)\left( {\begin{array}{*{20}{c}} 1 & {{T_x}} \\ 0 & I \\ \end{array} } \right),$

where $ W \in \mathcal{S}{P_{n - 1}}$ . By letting $ v \to \infty $ we obtain the $ \phi $-operator that attaches to every automorphic form for $ G{L_n}(\mathbb{Z})$, $ f(Y)$, an automorphic form for $ G{L_{n - 1}}(\mathbb{Z})$, $ f\vert\phi (W)$.

References [Enhancements On Off] (What's this?)

  • [1] T. Bengtson, Bessel functions on $ {\mathcal{P}_n}$ , Pacific J. Math. 108 (1983), 19-30. MR 709697 (85b:43004)
  • [2] D. Bump, Automorphic forms on $ GL(3,\mathbb{R})$, Lecture Notes in Math., vol. 1083, Springer-Verlag, New York, 1984. MR 765698 (86g:11028)
  • [3] D. Grenier, Fundamental domains for the general linear group, Pacific J. Math 132 (1988), 293-317. MR 934172 (89d:11055)
  • [4] K. Imai and A. Terras, Fourier expansions of Eisenstein series for $ GL(3,\mathbb{Z})$, Trans. Amer. Math. Soc. 273 (1982), 679-694. MR 667167 (84d:10033)
  • [5] N. Lebedev, Special functions and their applications, Dover, New York, 1972. MR 0350075 (50:2568)
  • [6] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichung, Math. Ann. 121 (1949), 141-183. MR 0031519 (11:163c)
  • [7] -, Siegel's modular forms and Dirichlet series, Lecture Notes in Math.,vol.216, Springer-Verlag, New York, 1971.
  • [8] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [9] -, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Math., Stockholm, 1962, pp. 177-189. MR 0176097 (31:372)
  • [10] J. Shalika, The multiplicity one theorem for $ GL(n)$, Ann. of Math. (2) 100 (1974), 171-193. MR 0348047 (50:545)
  • [11] A. Terras, Harmonic analysis on symmetric spaces and applications. I, II, Springer-Verlag, New York, 1985, 1988. MR 791406 (87f:22010)
  • [12] -, The Chowla-Selberg method for Fourier expansion of higher rank Eisenstein series, Canad. Math. Bull. 28 (1985), 280-294. MR 790949 (87a:11049)
  • [13] A. Vinogradov and L. Takhtadzhyan, Theory of Eisenstein series for the group $ SL(3,\mathbb{R})$ and its application to a binary problem, J. Soviet Math 18 (1982), 293-324.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F55, 11F32, 11F70

Retrieve articles in all journals with MSC: 11F55, 11F32, 11F70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1066443-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society