Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On $ q$-analogues of the Fourier and Hankel transforms


Authors: Tom H. Koornwinder and René F. Swarttouw
Journal: Trans. Amer. Math. Soc. 333 (1992), 445-461
MSC: Primary 33D45; Secondary 33D80, 39A10, 44A15
DOI: https://doi.org/10.1090/S0002-9947-1992-1069750-0
MathSciNet review: 1069750
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For H. Exton's $ q$-analogue of the Bessel function (going back to W. Hahn in a special case, but different from F. H. Jackson's $ q$-Bessel functions) we derive Hansen-Lommel type orthogonality relations, which, by a symmetry, turn out to be equivalent to orthogonality relations which are $ q$-analogues of the Hankel integral transform pair. These results are implicit, in the context of quantum groups, in a paper by Vaksman and Korogodskiĭ. As a specialization we get ($ q$-cosines and $ q$-sines which admit $ q$-analogues of the Fourier-cosine and Fourier-sine transforms. We also get a formula which is both an analogue of Graf's addition formula and of the Weber-Schafheitlin discontinuous integral.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews, $ q$-series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra, Regional Conf. Ser. in Math., no. 66, Amer. Math. Soc., Providence, R.I., 1986. MR 858826 (88b:11063)
  • [2] G. E. Andrews and R. Askey, Enumeration of partitions: The role of Eulerian series and $ q$-orthogonal polynomials, Higher Combinatorics, (M. Aigner, ed.), Reidel, 1977, pp. 3-26. MR 519776 (80b:10021)
  • [3] H. Exton, A basic analogue of the Bessel-Clifford equation, Jñānābha 8 (1978), 49-56. MR 637273 (82j:39002)
  • [4] -, $ q$-hypergeometric functions and applications, Ellis Horwood, 1983.
  • [5] Ph. Feinsilver, Elements of $ q$-harmonic analysis, J. Math. Anal. Appl. 141 (1989), 509-526. MR 1009060 (90i:43010)
  • [6] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press, 1990. MR 1052153 (91d:33034)
  • [7] W. Hahn, Beiträge zur Theorie der Heineschen Reihen, Math. Nachr. 2 (1949), 340-379. MR 0035344 (11:720b)
  • [8] -, Die mechanische Deutung einer geometrischen Differenzgleichung, Z. Angew. Math. Mech. 33 (1953), 270-272. MR 0057662 (15:260b)
  • [9] E. Heine, Handbuch der Kugelfunctionen, Theorie und Anwendungen. Erster Band: Theorie der Kugelfunctionen und der verwandten Functionen, Reiner, Berlin, 1878.
  • [10] M. E. H. Ismail, The zeros of basic Bessel functions, the functions $ {J_{\nu + ax}}(x)$, and associated orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), 1-19. MR 649849 (83c:33010)
  • [11] T. H. Koornwinder, Jacobi functions as limit cases of $ q$-ultraspherical polynomials, J. Math. Anal. Appl. (to appear). MR 1052043 (91c:33033)
  • [12] M. Rahman, An addition theorem and some product formulas for $ q$-Bessel functions, Canad. J. Math. 40 (1988), 1203-1221. MR 973517 (90k:33015)
  • [13] -, A note on the orthogonality of Jackson's $ q$-Bessel functions, Canad. Math. Bull. 32 (1989), 369-376.
  • [14] L. L. Vaksman and L. I. Korogodskiĭ, An algebra of bounded functions on the quantum group of the motions of the plane and $ q$-analogues of Bessel functions, Soviet Math. Dokl. 39 (1989), 173-177. MR 997179 (90j:17027)
  • [15] G. N. Watson, Theory of Bessel functions, Cambridge Univ. Press, 1944. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33D45, 33D80, 39A10, 44A15

Retrieve articles in all journals with MSC: 33D45, 33D80, 39A10, 44A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1069750-0
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society