Boundaries of Markov partitions

Authors:
Jonathan Ashley, Bruce Kitchens and Matthew Stafford

Journal:
Trans. Amer. Math. Soc. **333** (1992), 177-201

MSC:
Primary 58F15; Secondary 28D05, 54H20, 58F11

MathSciNet review:
1073772

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The core of a Markov partition is the nonwandering set of the map restricted to the boundary of the partition. We show that the core of a Markov partition is always a finitely presented system. Then we show that every one sided sofic system occurs as the core of a Markov partition for an -fold covering map on the circle and every two sided sofic system occurs as the core of a Markov partition for a hyperbolic automorphism of the two dimensional torus.

**[AGW]**Roy L. Adler, L. Wayne Goodwyn, and Benjamin Weiss,*Equivalence of topological Markov shifts*, Israel J. Math.**27**(1977), no. 1, 48–63. MR**0437715****[AW]**Roy L. Adler and Benjamin Weiss,*Similarity of automorphisms of the torus*, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR**0257315****[AM]**Roy L. Adler and Brian Marcus,*Topological entropy and equivalence of dynamical systems*, Mem. Amer. Math. Soc.**20**(1979), no. 219, iv+84. MR**533691**, 10.1090/memo/0219**[Bo1]**Rufus Bowen,*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR**0442989****[Bo2]**Rufus Bowen,*On Axiom A diffeomorphisms*, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 35. MR**0482842****[Bo3]**Rufus Bowen,*Markov partitions are not smooth*, Proc. Amer. Math. Soc.**71**(1978), no. 1, 130–132. MR**0474415**, 10.1090/S0002-9939-1978-0474415-8**[CP]**Ethan M. Coven and Michael E. Paul,*Endomorphisms of irreducible subshifts of finite type*, Math. Systems Theory**8**(1974/75), no. 2, 167–175. MR**0383378****[CR]**E. Coven and W. Reddy,*Positively expansive maps of compact manifolds*.**[F]**David Fried,*Finitely presented dynamical systems*, Ergodic Theory Dynam. Systems**7**(1987), no. 4, 489–507. MR**922362**, 10.1017/S014338570000417X**[H]**G. A. Hedlund,*Endomorphisms and automorphisms of the shift dynamical system*, Math. Systems Theory**3**(1969), 320–375. MR**0259881****[Kr1]**Wolfgang Krieger,*On sofic systems. I*, Israel J. Math.**48**(1984), no. 4, 305–330. MR**776312**, 10.1007/BF02760631**[Kr2]**Wolfgang Krieger,*On the subsystems of topological Markov chains*, Ergodic Theory Dynam. Systems**2**(1982), no. 2, 195–202 (1983). MR**693975**, 10.1017/S0143385700001516**[M]**Brian Marcus,*Factors and extensions of full shifts*, Monatsh. Math.**88**(1979), no. 3, 239–247. MR**553733**, 10.1007/BF01295238**[S]**Michael Shub,*Global stability of dynamical systems*, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR**869255****[St]**Matthew Stafford,*Markov partitions for expanding maps of the circle*, Trans. Amer. Math. Soc.**324**(1991), no. 1, 385–403. MR**1049617**, 10.1090/S0002-9947-1991-1049617-3**[W]**Benjamin Weiss,*Subshifts of finite type and sofic systems*, Monatsh. Math.**77**(1973), 462–474. MR**0340556**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F15,
28D05,
54H20,
58F11

Retrieve articles in all journals with MSC: 58F15, 28D05, 54H20, 58F11

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1073772-3

Keywords:
Markov partitions,
sofic systems

Article copyright:
© Copyright 1992
American Mathematical Society