Uniqueness of radial solutions of semilinear elliptic equations

Authors:
Man Kam Kwong and Yi Li

Journal:
Trans. Amer. Math. Soc. **333** (1992), 339-363

MSC:
Primary 35J65; Secondary 34B15, 35J25

MathSciNet review:
1088021

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: E. Yanagida recently proved that the classical Matukuma equation with a given exponent has only one finite mass solution. We show how similar ideas can be exploited to obtain uniqueness results for other classes of equations as well as Matukuma equations with more general coefficients. One particular example covered is , with . The key ingredients of the method are energy functions and suitable transformations. We also study general boundary conditions, using an extension of a recent result by Bandle and Kwong. Yanagida's proof does not extend to solutions of Matukuma's equation satisfying other boundary conditions. We treat these with a completely different method of Kwong and Zhang.

**[1]**F. V. Atkinson and L. A. Peletier,*Emden-Fowler equations involving critical exponents*, Nonlinear Anal.**10**(1986), no. 8, 755–776. MR**851145**, 10.1016/0362-546X(86)90036-2**[2]**C. Bandle and Man Kam Kwong,*Semilinear elliptic problems in annular domains*, Z. Angew. Math. Phys.**40**(1989), no. 2, 245–257 (English, with French and German summaries). MR**990630**, 10.1007/BF00945001**[3]**Haïm Brézis and Louis Nirenberg,*Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents*, Comm. Pure Appl. Math.**36**(1983), no. 4, 437–477. MR**709644**, 10.1002/cpa.3160360405**[4]**C. Budd and J. Norbury,*Semilinear elliptic equations and supercritical growth*, J. Differential Equations**68**(1987), no. 2, 169–197. MR**892022**, 10.1016/0022-0396(87)90190-2**[5]**Chiun Chuan Chen and Chang Shou Lin,*Uniqueness of the ground state solutions of Δ𝑢+𝑓(𝑢)=0 in 𝑅ⁿ,𝑛≥3*, Comm. Partial Differential Equations**16**(1991), no. 8-9, 1549–1572. MR**1132797**, 10.1080/03605309108820811**[6]**Charles V. Coffman,*On the positive solutions of boundary-value problems for a class of nonlinear differential equations*, J. Differential Equations**3**(1967), 92–111. MR**0204755****[7]**C. V. Coffman and M. Marcus,*Existence and uniqueness results for semi-linear Dirichlet problems in annuli*, Arch. Rational Mech. Anal.**108**(1989), no. 4, 293–307. MR**1013459**, 10.1007/BF01041066**[8]**E. N. Dancer,*The effect of domain shape on the number of positive solutions of certain nonlinear equations*, J. Differential Equations**74**(1988), no. 1, 120–156. MR**949628**, 10.1016/0022-0396(88)90021-6**[9]**B. Gidas, Wei Ming Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879****[10]**-,*Symmetry of positive solutions of nonlinear elliptic equations in*, Adv. in Math. Studies**7A**(1981), 369-402.**[11]**Man Kam Kwong,*On the Kolodner-Coffman method for the uniqueness problem of Emden-Fowler BVP*, Z. Angew. Math. Phys.**41**(1990), no. 1, 79–104. MR**1036511**, 10.1007/BF00946076**[12]**Man Kam Kwong,*Uniqueness of positive solutions of Δ𝑢-𝑢+𝑢^{𝑝}=0 in 𝑅ⁿ*, Arch. Rational Mech. Anal.**105**(1989), no. 3, 243–266. MR**969899**, 10.1007/BF00251502**[13]**-,*A comparison result and elliptic equations with subcritical growth*, Argonne National Laboratory Preprint Series MCS-P73-0589 (1989); to appear in Proc. of Conference on Reaction Diffusion Equations, Gregynog, Wales, 1989.**[14]**Man Kam Kwong,*Uniqueness results for Emden-Fowler boundary value problems*, Nonlinear Anal.**16**(1991), no. 5, 435–454. MR**1093379**, 10.1016/0362-546X(91)90069-D**[15]**Man Kam Kwong and Li Qun Zhang,*Uniqueness of the positive solution of Δ𝑢+𝑓(𝑢)=0 in an annulus*, Differential Integral Equations**4**(1991), no. 3, 583–599. MR**1097920****[16]**Yi Li and Wei-Ming Ni,*On conformal scalar curvature equations in 𝑅ⁿ*, Duke Math. J.**57**(1988), no. 3, 895–924. MR**975127**, 10.1215/S0012-7094-88-05740-7**[17]**Yi Li and Wei-Ming Ni,*On the existence and symmetry properties of finite total mass solutions of the Matukuma equation, the Eddington equation and their generalizations*, Arch. Rational Mech. Anal.**108**(1989), no. 2, 175–194. MR**1011557**, 10.1007/BF01053462**[18]**T. Matukuma,*The cosmos*, Iwanami Shoten, Tokyo, 1938. (Japanese)**[19]**Kevin McLeod and James Serrin,*Uniqueness of positive radial solutions of Δ𝑢+𝑓(𝑢)=0 in 𝑅ⁿ*, Arch. Rational Mech. Anal.**99**(1987), no. 2, 115–145. MR**886933**, 10.1007/BF00275874**[20]**Wei-Ming Ni and Roger D. Nussbaum,*Uniqueness and nonuniqueness for positive radial solutions of Δ𝑢+𝑓(𝑢,𝑟)=0*, Comm. Pure Appl. Math.**38**(1985), no. 1, 67–108. MR**768105**, 10.1002/cpa.3160380105**[21]**Wei-Ming Ni and Shoji Yotsutani,*Semilinear elliptic equations of Matukuma-type and related topics*, Japan J. Appl. Math.**5**(1988), no. 1, 1–32. MR**924742**, 10.1007/BF03167899**[22]**Ezzat S. Noussair and Charles A. Swanson,*Solutions of Matukuma’s equation with finite total mass*, Indiana Univ. Math. J.**38**(1989), no. 3, 557–561. MR**1017324**, 10.1512/iumj.1989.38.38026**[23]**J. F. Toland,*Positive solutions of nonlinear elliptic equations—existence and nonexistence of solutions with radial symmetry in 𝐿_{𝑝}(𝑅^{𝑁})*, Trans. Amer. Math. Soc.**282**(1984), no. 1, 335–354. MR**728716**, 10.1090/S0002-9947-1984-0728716-3**[24]**E. Yanagida,*Structure of positive radial solutions of Matukuma's equation*, Preprint.**[25]**Liqun Zhang, Private communication.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35J65,
34B15,
35J25

Retrieve articles in all journals with MSC: 35J65, 34B15, 35J25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1088021-X

Keywords:
Semilinear elliptic equation,
boundary value problem,
uniqueness,
radial solution,
positive solution,
energy function

Article copyright:
© Copyright 1992
American Mathematical Society