Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Capacitability theorem in measurable gambling theory


Authors: A. Maitra, R. Purves and W. Sudderth
Journal: Trans. Amer. Math. Soc. 333 (1992), 221-249
MSC: Primary 60G40; Secondary 90D60, 93E20
DOI: https://doi.org/10.1090/S0002-9947-1992-1140918-8
MathSciNet review: 1140918
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A player in a measurable gambling house $ \Gamma$ defined on a Polish state space $ X$ has available, for each $ x \in X$, the collection $ \Sigma (x)$ of possible distributions $ \sigma$ for the stochastic process $ {x_1},{x_2}, \ldots $ of future states. If the object is to control the process so that it will lie in an analytic subset $ A$ of $ H = X \times X \times \cdots$, then the player's optimal reward is

$\displaystyle M(A)(x) = \sup \{ \sigma (A):\sigma \in \Sigma (x)\}.$

The operator $ M( \bullet )(x)$ is shown to be regular in the sense that

$\displaystyle M(A)(x) = \inf M(\{ \tau < \infty \} )(x),$

where the infimum is over Borel stopping times $ \tau $ such that $ A \subseteq \{ \tau < \infty \}$. A consequence of this regularity property is that the value of $ M(A)(x)$ is unchanged if, as in the gambling theory of Dubins and Savage, the player is allowed to use nonmeasurable strategies. This last result is seen to hold for bounded, Borel measurable payoff functions including that of Dubins and Savage.

References [Enhancements On Off] (What's this?)

  • [1] D. P. Bertsekas and S. E. Shreve, Stochastic optimal control: The discrete time case, Academic Press, New York, 1978. MR 511544 (80d:93081)
  • [2] G. Choquet, Lectures on analysis, Vol. 1, Integration and Topological Vector Spaces, Benjamin, New York and Amsterdam, 1969.
  • [3] C. Dellacherie, Quelques résultats sur les maisons de jeux analytiques, (Séminaire de Probabilités XIX, Strasbourg 1983-84), Lecture Notes in Math., vol. 1123, Springer-Verlag, Berlin and New York, 1985, pp. 222-229. MR 889480 (88j:54052)
  • [4] L. E. Dubins and L. J. Savage, Inequalities for stochastic processes, Dover, New York, 1976. MR 0410875 (53:14618)
  • [5] L. E. Dubins, A. Maitra, R. Purves, and W. Sudderth, Measurable, nonleavable gambling problems, Israel J. Math. 67 (1989), 257-271. MR 1029901 (91d:60101)
  • [6] A. S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1973), 337-384. MR 0369072 (51:5308)
  • [7] A. Louveau, Recursiveness and compactness, Higher Set Theory (Proceedings, Oberwolfach, Germany, 1977), Lecture Notes in Math., vol. 669, Springer-Verlag, Berlin and New York, 1978, pp. 303-337. MR 520192 (80j:03071)
  • [8] -, Ensembles analytiques et boreliens dans les espaces produits, Astérisque 78 (1980), 1-84.
  • [9] -, Recursivity and capacity theory, Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, R.I., 1985, pp. 285-301. MR 791064 (87h:28004)
  • [10] A. Maitra, V. Pestien, and S. Ramakrishnan, Domination by Borel stopping times and some separation properties, Fund. Math. 135 (1990), 189-201. MR 1077510 (92i:54039)
  • [11] A. Maitra, R. Purves, and W. Sudderth, Leavable gambling problems with unbounded utilities, Trans. Amer. Math. Soc. 320 (1990), 543-567. MR 989581 (91g:60054)
  • [12] -, A Borel measurable version of König's Lemma for random paths, Ann. Probab. 19 (1991), 423-451. MR 1085346 (92g:60059)
  • [13] -, Regularity of the optimal reward operator, University of Minnesota School of Statistics, Tech. Report No. 534, 1989.
  • [14] M. Monticino, The adequacy of universal strategies in analytic gambling problems, Math. Oper. Res. 16 (1991), 21-41. MR 1106788 (92i:60087)
  • [15] Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980. MR 561709 (82e:03002)
  • [16] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967. MR 0226684 (37:2271)
  • [17] R. Purves and W. Sudderth, Some finitely additive probability, University of Minnesota School of Statistics, Tech. Report No. 220, 1973.
  • [18] -, Some finitely additive probability, Ann. Probab. 4 (1976), 259-276. MR 0402888 (53:6702)
  • [19] -, How to stay in a set or König's Lemma for random paths, Israel J. Math. 43 (1982), 139-153. MR 689973 (84m:60057)
  • [20] -, Finitely additive zero-one laws, Sankhyā Ser. A 45 (1983), 32-37. MR 749351 (85j:60057)
  • [21] S. Saks, Theory of the integral, Dover, New York, 1964. MR 0167578 (29:4850)
  • [22] R. E. Strauch, Measurable gambling houses, Trans. Amer. Math. Soc. 126 (1967), 64-72 (Correction 130 (1968), 184). MR 0205352 (34:5181)
  • [23] W. Sudderth, On the existence of good stationary strategies, Trans. Amer. Math. Soc. 135 (1969), 399-414. MR 0233595 (38:1916)
  • [24] -, On measurable gambling problems, Ann. Math. Statist. 42 (1971), 260-269. MR 0282404 (43:8116)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G40, 90D60, 93E20

Retrieve articles in all journals with MSC: 60G40, 90D60, 93E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1140918-8
Keywords: Measurable gambling, stochastic control, regularity, capacity, analytic sets, hyperarithmetic recursion
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society