Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A spectral sequence for pseudogroups on $ {\bf R}$


Author: Solomon M. Jekel
Journal: Trans. Amer. Math. Soc. 333 (1992), 741-749
MSC: Primary 58H10; Secondary 57R32
DOI: https://doi.org/10.1090/S0002-9947-1992-1066445-4
MathSciNet review: 1066445
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a pseudogroup $ P$ of local homeomorphisms of $ \mathbb{R}$ satisfying the following property: given points $ {x_0} < \cdots < {x_p}$ and $ {y_0} < \cdots < {y_p}$ in $ \mathbb{R}$ , there is an element of $ P$, with domain an interval containing $ [{x_0},{x_p}]$, taking each $ {x_i}$ to $ {y_i}$. The pseudogroup $ {P^r}$ of local $ {C^r}$ homeomorphisms, $ 0 \leq r \leq \infty $ , is of this type as is the pseudogroup $ {P^\omega }$ of local real-analytic homeomorphisms. Let $ \Gamma $ be the topological groupoid of germs of elements of $ P$. We construct a spectral sequence which involves the homology of a sequence of discrete groups $ \{ {G_p}\} $. Consider the set $ \{ f \in P\vert f(i) = i,i = 0,1, \ldots ,p\} $,; define $ f\sim g$ if $ f$ and $ g$ agree on a neighborhood of $ [0,p] \subset \mathbb{R}$. The equivalence classes under composition form the group $ {G_p}$. Theorem: There is a spectral sequence with $ E_{p,q}^1 = {H_q}(B{G_p})$ which converges to $ {H_{p + q}}(B\Gamma )$. Our spectral sequence can be considered to be a version which covers the realanalytic case of some well-known theorems of J. Mather and G. Segal. The article includes some observations about how the spectral sequence applies to $ B\Gamma _1^\omega $. Further applications will appear separately.


References [Enhancements On Off] (What's this?)

  • [1] D. B. A. Epstein, Commutators of $ {C^\infty }$ diffeomorphisms, Comment. Math. Helv. 59 (1984), 111-122. MR 743945 (86c:58018)
  • [2] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183-194. MR 0263104 (41:7709)
  • [3] -, Homotopy and integrability, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 133-163. MR 0285027 (44:2251)
  • [4] P. Higgins, Categories and groupoids, Van Nostrand-Reinhold Math. Ser., vol. 32, Van Nostrand-Reinhold, London, 1971. MR 0327946 (48:6288)
  • [5] S. Jekel, On the second homology group of the discrete group of diffeomorphisms of the circle, J. Pure Appl. Algebra 59 (1989), 255-264. MR 1009682 (91a:20058)
  • [6] -, Pseudogroups and homology, Preprint.
  • [7] S. Jekel, E. Dror Farjoun and A. Suciu, Homology of jet groups, J. Pure Appl. Algebra (to appear). MR 1350206 (97g:20060)
  • [8] -, Real analytic $ \Gamma $-structures with one leaf on the torus, Preprint.
  • [9] -, Commutators of real analytic diffeomorphisms of the interval (in preparation).
  • [10] S. Mac Lane, Homology, Academic Press, New York, 1963. MR 0156879 (28:122)
  • [11] J. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology 10 (1971), 297-298. MR 0288777 (44:5973)
  • [12] -, Integrability in codimension $ 1$, Comment. Math. Helv. 48 (1973), 195-233. MR 0356085 (50:8556)
  • [13] -, Commutators of diffeomorphisms, Comment. Math. Helv. 49 (1974), 512-528. MR 0356129 (50:8600)
  • [14] J. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. 65 (1984), 357-362. MR 0084138 (18:815d)
  • [15] D. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155-157. MR 0195097 (33:3302)
  • [16] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112. MR 0232393 (38:718)
  • [17] -, Categories and cohomology theories, Topology 13 (1974), 293-312. MR 0353298 (50:5782)
  • [18] -, Classifying spaces related to foliations, Topology 17 (1978), 367-382. MR 516216 (80h:57036)
  • [19] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [20] J. Stasheff, Classification via $ B{\Gamma _q}$, Lecture Notes in Math., vol. 299, Springer-Verlag, Berlin and New York, 1972, pp. 86-94.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58H10, 57R32

Retrieve articles in all journals with MSC: 58H10, 57R32


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1066445-4
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society