Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Comparing periodic orbits of maps of the interval


Authors: C. Bernhardt, E. Coven, M. Misiurewicz and I. Mulvey
Journal: Trans. Amer. Math. Soc. 333 (1992), 701-707
MSC: Primary 58F20; Secondary 58F08
DOI: https://doi.org/10.1090/S0002-9947-1992-1079051-2
MathSciNet review: 1079051
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \pi $ and $ \theta $ be cyclic permutations of finite ordered sets. We say that $ \pi $ forces $ \theta $ if every continuous map of the interval which has a representative of $ \pi $ also has one of $ \theta $. We give a geometric version of Jungreis' combinatorial algorithm for deciding in certain cases whether $ \pi $ forces $ \theta $ .


References [Enhancements On Off] (What's this?)

  • [Ba] S. Baldwin, Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-127. MR 913178 (89c:58057)
  • [Bel] C. Bernhardt, Simple permutations with order a power of two, Ergodic Theory Dynamical Systems 4 (1984), 179-186. MR 766099 (86d:58092)
  • [Be2] -, The ordering on permutations induced by continuous maps of the real line, Ergodic Theory Dynamical Systems 7 (1987), 155-160. MR 896787 (88h:58099)
  • [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz, and L.-S. Young, Periodic points and topological entropy of one-dimensional maps, Lecture Notes in Math., vol. 819, Springer, 1980, pp. 18-34. MR 591173 (82j:58097)
  • [J] I. Jungreis, Some results on the Sarkovskii partial ordering of permutations, Trans. Amer. Math. Soc. (to appear). MR 998354 (91h:58060)
  • [MT] J. Milnor and W. Thurston, On iterated maps of the interval, Lecture Notes in Math., vol. 1342, Springer, 1988, pp. 465-563. MR 970571 (90a:58083)
  • [MN] M. Misiurewicz and Z. Nitecki, Combinatorial patterns for maps of the interval, Universität Göttingen, preprint, 1989. MR 1086562 (92h:58105)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20, 58F08

Retrieve articles in all journals with MSC: 58F20, 58F08


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1079051-2
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society