Comparing periodic orbits of maps of the interval

Authors:
C. Bernhardt, E. Coven, M. Misiurewicz and I. Mulvey

Journal:
Trans. Amer. Math. Soc. **333** (1992), 701-707

MSC:
Primary 58F20; Secondary 58F08

DOI:
https://doi.org/10.1090/S0002-9947-1992-1079051-2

MathSciNet review:
1079051

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be cyclic permutations of finite ordered sets. We say that forces if every continuous map of the interval which has a representative of also has one of . We give a geometric version of Jungreis' combinatorial algorithm for deciding in certain cases whether forces .

**[Ba]**S. Baldwin,*Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions*, Discrete Math.**67**(1987), 111-127. MR**913178 (89c:58057)****[Bel]**C. Bernhardt,*Simple permutations with order a power of two*, Ergodic Theory Dynamical Systems**4**(1984), 179-186. MR**766099 (86d:58092)****[Be2]**-,*The ordering on permutations induced by continuous maps of the real line*, Ergodic Theory Dynamical Systems**7**(1987), 155-160. MR**896787 (88h:58099)****[BGMY]**L. Block, J. Guckenheimer, M. Misiurewicz, and L.-S. Young,*Periodic points and topological entropy of one-dimensional maps*, Lecture Notes in Math., vol. 819, Springer, 1980, pp. 18-34. MR**591173 (82j:58097)****[J]**I. Jungreis,*Some results on the Sarkovskii partial ordering of permutations*, Trans. Amer. Math. Soc. (to appear). MR**998354 (91h:58060)****[MT]**J. Milnor and W. Thurston,*On iterated maps of the interval*, Lecture Notes in Math., vol. 1342, Springer, 1988, pp. 465-563. MR**970571 (90a:58083)****[MN]**M. Misiurewicz and Z. Nitecki,*Combinatorial patterns for maps of the interval*, Universität Göttingen, preprint, 1989. MR**1086562 (92h:58105)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F20,
58F08

Retrieve articles in all journals with MSC: 58F20, 58F08

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1079051-2

Article copyright:
© Copyright 1992
American Mathematical Society