Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Differentials of complex interpolation processes for Köthe function spaces


Author: N. J. Kalton
Journal: Trans. Amer. Math. Soc. 333 (1992), 479-529
MSC: Primary 46M35; Secondary 46E30, 47B38, 47D15
DOI: https://doi.org/10.1090/S0002-9947-1992-1081938-1
MathSciNet review: 1081938
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We continue the study of centralizers on Köthe function spaces and the commutator estimates they generate (see [29]). Our main result is that if $ X$ is a super-reflexive Köthe function space then for every real centralizer $ \Omega $ on $ X$ there is a complex interpolation scale of Köthe function spaces through $ X$ inducing $ \Omega $ as a derivative, up to equivalence and a scalar multiple. Thus, in a loose sense, all real centralizers can be identified with derivatives of complex interpolation processes. We apply our ideas in an appendix to show, for example, that there is a twisted sum of two Hilbert spaces which fails to be a $ ({\text{UMD}})$-space.


References [Enhancements On Off] (What's this?)

  • [1] J. Arazy, Some remarks on interpolation theorems and the boundedness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), 453-495. MR 516764 (81k:47056a)
  • [2] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988. MR 928802 (89e:46001)
  • [3] J. Bergh and J. Lofstrom, Interpolation spaces: an introduction, Springer-Verlag, Berlin, 1976. MR 0482275 (58:2349)
  • [4] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163-168. MR 727340 (85a:46011)
  • [5] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254. MR 0412788 (54:909)
  • [6] A. V. Bukvhalov and A. A. Danilevich, Boundary properties of analytic functions with values in a Banach space, Mat. Zametki 31 (1982) 103-114 = Math. Notes 31 (1982), 104-110.
  • [7] D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011. MR 632972 (83f:60070)
  • [8] -, A geometric condition that implies the existence of certain singular integrals of Banach space-valued functions, Conference on Harmonic Analysis in Honor of A. Zygmund (W. Beckner, A. P. Calderon, R. Fefferman, P. W. Jones, eds.), Wadsworth, Belmont, Calif., 1983, pp. 270-286. MR 730072 (85i:42020)
  • [9] A. P. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 0167830 (29:5097)
  • [10] O. D. Ceretelli, A metric characterization of the set of functions whose conjugate functions are integrable, Bull. Acad. Sci. Georgian SSR 81 (1976), 281-283. (Russian) MR 0410232 (53:13982)
  • [11] R. R. Coifman, M. Cwikel, R. Rochberg, Y. Saghar, and G. Weiss, The complex method for interpolation of operators acting on families of Banach spaces, Euclidean Harmonic Analysis (J. Benedetto, ed.), Lecture Notes in Math., vol. 779, Springer-Verlag, Berlin and New York, 1980. MR 576042 (81k:46075)
  • [12] -, A theory of complex interpolation for families of Banach spaces, Adv. Math. 33 (1982), 203-229. MR 648799 (83j:46084)
  • [13] R. R. Coifman and R. Rochberg, Another characterization of $ {\text{BMO}}$, Proc. Amer. Math. Soc. 79 (1980), 249-254. MR 565349 (81b:42067)
  • [14] R. R. Coifman and S. Semmes Interpolation of Banach spaces, Perron processes, and Yang-Mills (to appear). MR 1216432 (95b:46104)
  • [15] M. Cwikel, B. Jawerth, M. Milman, and R. Rochberg, Differential estimates and commutators in interpolation theory, Analysis at Urbana II (E. R. Berkson, N. T. Peck, and J. Uhl, eds.), London Math. Soc. Lecture Notes Ser., vol. 138, Cambridge Univ. Press, Cambridge, 1989, pp. 170-220. MR 1009191 (90k:46157)
  • [16] M. Cwikel and P. Nilsson, Interpolation of weighted Banach lattices (to appear).
  • [17] B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211-233. MR 576872 (81h:42011)
  • [18] P. L. Duren, Theory of $ {H^p}$-spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [19] C. M. Eoff and N. J. Kalton, Zeros of entire functions and characteristic determinants, Complex Variables 14 (1990), 53-65. MR 1048705 (91c:47035)
  • [20] T. A. Gillespie, Factorization in Banach function spaces, Indag. Math. 43 (1981), 287-300. MR 632168 (82k:46047)
  • [21] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations Math. Mono., vol. 18, Amer. Math. Soc., Providence, R.I., 1969. MR 0246142 (39:7447)
  • [22] E. Hernandez, Intermediate spaces and the complex method of interpolation for families of Banach spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 245-266. MR 876124 (88c:46084)
  • [23] B. Jawerth, R. Rochberg, and G. Weiss, Commutator and other second order estimates in real interpolation theory, Ark. Mat. 24 (1986), 191-210. MR 884187 (88i:46096)
  • [24] N. J. Kalton, The three space problem for locally bounded $ F$-spaces, Compositio Math. 37 (1978), 243-276. MR 511744 (80j:46005)
  • [25] -, Convexity, type, and the three-space problem, Studia Math. 69 (1980), 57-96. MR 647141 (83m:46009)
  • [26] -, The space $ {Z_2}$ viewed as a symplectic Banach space, Proc. Res. Workshop on Banach Space Theory, Univ. of Iowa, 1981, pp. 97-111.
  • [27] -, Applications of an inequality for $ {H_1}$-functions, Longhorn Notes, Functional Analysis Seminar, Univ. of Texas at Austin, 1985/6.
  • [28] -, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84 (1986), 297-324. MR 877084 (88g:46030)
  • [29] -, Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. No. 385, 1988. MR 938889 (89h:47104)
  • [30] -, On rearrangements of vector-valued $ {H_1}$-functions, Ark. Mat. 26 (1988), 221-229. MR 1050106 (91m:42021)
  • [31] -, Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74. MR 1013933 (91d:47022)
  • [32] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem, Trans. Amer. Math. Soc. 255 (1979), 1-30. MR 542869 (82g:46021)
  • [33] N. J. Kalton, N. T. Peck, and J. W. Roberts, An $ F$-space sampler, London Math. Soc. Lecture Notes Ser., vol. 89, Cambridge Univ. Press, 1985. MR 808777 (87c:46002)
  • [34] N. J. Kalton and J. W. Roberts, Uniformly exhaustive submeasures and nearly additive set functions, Trans. Amer. Math. Soc. 278 (1983), 803-816. MR 701524 (85f:28006)
  • [35] N. J. Kalton and R. C. Swanson, A symplectic Banach space with no Lagrangian subspaces, Trans. Amer. Math. Soc. 273 (1982), 385-392. MR 664050 (83j:58010)
  • [36] J. Komlos, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18 (1967), 217-229. MR 0210177 (35:1071)
  • [37] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Function spaces, Ergeb. Math. Grenzgeb., vol. 97, Springer-Verlag, Berlin, Heidelberg, and New York, 1979. MR 540367 (81c:46001)
  • [38] G. Y. Lozanovskii, On some Banach lattices, Siberian Math. J. 10 (1969), 419-430.
  • [39] B. Maurey, Nouveaux théorèmes de Nikishin, Exposeés 4-5, Sem. Maurey-Schwartz, 1974-1974. MR 0448073 (56:6383)
  • [40] M. Milman and T. Schonbek, A note on second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc. 110 (1990), 961-969. MR 1075187 (91k:46088)
  • [41] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [42] E. M. Nikishin, Resonance theorems and superlinear operators, Uspekhi Mat. Nauk 25 (1970), 129-191 = Russian Math. Surveys 25 (1970), 124-187. MR 0296584 (45:5643)
  • [43] G. Pisier, Some applications of the complex interpolation method to Banach lattices, J. Analyse Math. 35 (1979), 264-281. MR 555306 (80m:46020)
  • [44] M. Ribe, Examples for the non-locally convex three space problem, Proc. Amer. Math. Soc. 73 (1979), 351-355. MR 518518 (81a:46010)
  • [45] R. Rochberg and G. Weiss, Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315-347. MR 717826 (86a:46099)
  • [46] J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, Probability and Banach spaces, Proceedings, Zaragoza, 1985 (J. Bastero and M. San Miguel, eds.), Lecture Notes in Math., vol. 1221, Springer-Verlag, Berlin and New York, 1986, pp. 195-222. MR 875011 (88g:42020)
  • [47] M. Schechter, Complex interpolation, Compositio Math. 18 (1967), 117-147. MR 0223880 (36:6927)
  • [48] S. Semmes, Interpolation of Banach spaces, differential geometry, and differential equations, Rev. Mat. Iberoamericana 4 (1988), 155-176. MR 1009123 (91e:46105)
  • [49] Z. Slodkowski, Complex interpolation of normed and quasinormed spaces in several dimensions. I, Trans. Amer. Math. Soc. 308 (1988), 685-711. MR 951623 (89j:32024)
  • [50] A. Torchinsky, Real-variable methods in harmonic analysis, Academic Press, New York, 1986. MR 869816 (88e:42001)
  • [51] J. L. Rubio de Francia, Operators in Banach lattices and weighted $ {L^2}$ inequalities, Math. Nachr. 133 (1987), 197-209. MR 912429 (89d:47070)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46M35, 46E30, 47B38, 47D15

Retrieve articles in all journals with MSC: 46M35, 46E30, 47B38, 47D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1081938-1
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society