The uniqueness and stability of the solution of the Riemann problem of a system of conservation laws of mixed type

Author:
Hai Tao Fan

Journal:
Trans. Amer. Math. Soc. **333** (1992), 913-938

MSC:
Primary 35L65; Secondary 76L05

DOI:
https://doi.org/10.1090/S0002-9947-1992-1104200-7

MathSciNet review:
1104200

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the uniqueness and stability of the similarity solution of the Riemann problem for a system of conservation laws of mixed type, with initial data separated by the elliptic region, which satisfies the viscosity-capillarity travelling wave admissibility criterion.

**[1]**C. M. Dafermos,*The entropy rate admissibility criterion for solutions of hyperbolic conservation laws*, J. Differential Equations**14**(1973), 202-212. MR**0328368 (48:6710)****[2]**-,*Solution of the Riemann problem for a class of hyperbolic conservation laws by the viscosity method*, Arch. Rational Mech. Anal.**52**(1973), 1-9. MR**0340837 (49:5587)****[3]**-,*Structure of the solutions of the Riemann problem for hyperbolic conservation laws*, Arch. Rational Mech. Anal.**53**(1974), 203-217.**[4]**C. M. Dafermos and R. J. DiPerna,*The Riemann problem for certain classes of hyperbolic systems of conservation laws*, J. Differential Equations**20**(1976), 90-114. MR**0404871 (53:8671)****[5]**C. M. Dafermos,*Admissible wave fans in nonlinear hyperbolic systems*, Arch. Rational Mech. Anal.**106**(1989), 243-360. MR**981663 (90m:35124)****[6]**Haitao Fan,*The structure of the solutions of the gas dynamics equation and the formation of the vacuum state*, Quart. Appl. Math., (to appear). MR**1096230 (92e:76053)****[7]**H.-T. Fan,*A limiting "viscosity" approach to the Riemann problem for the materials exhibiting change of phase*. II, Arch. Rational Mech. Anal, (to appear). MR**1132765 (93a:35102)****[8]**R. Hagan and M. Slemrod,*The viscosity-capillarity criterion for shocks and phase transitions*, Arch. Rational Mech. Anal.**83**(1984), 333-361. MR**714979 (85i:76033)****[9]**L. Hsiao,*Admissibility criterion and admissible weak solutions of Riemann problem for conservation laws of mixed type*, Workshop Proceedings on Nonlinear Evolution Equations that Change Type, IMA Vol. in Math., and its Appl., Springer, Berlin and New York (to appear). MR**1074187****[10]**-,*Uniqueness of admissible solutions of Riemann problem of system of conservation laws of mixed type*, J. Differential Equations (to appear).**[11]**R. D. James,*The propagation of phase boundaries in elastic bars*, Arch. Rational Mech. Anal.**73**(1980), 125-158. MR**556559 (80k:73009)****[12]**A. S. Kalasnikov,*Construction of generalized solutions of quasi-linear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter*, Dokl. Akad. Nauk SSSR**127**(1959), 27-30. MR**0108651 (21:7366)****[13]**P. D. Lax,*Hyperbolic systems of conservation laws*, Comm. Pure Appl. Math.**10**(1957), 537-566. MR**0093653 (20:176)****[14]**T.-P. Liu,*The Riemann problem for general system of conservation laws*, J. Differential Equations**18**(1975), 218-234. MR**0369939 (51:6168)****[15]**M. Shearer,*Riemann problem for a class of conservation laws of mixed type*, J. Differential Equations**46**(1982), 426-443. MR**681232 (84a:35164)****[16]**-,*Nonuniqueness of admissible solutions of Riemann initial value problem for a system of conservation laws of mixed type*, Arch. Rational Mech. Anal.**93**(1986), 45-59. MR**822335 (87h:35207)****[17]**-,*Dynamic phase transitions in a van der Waals gas*, Quart. Appl. Math.**47**(1988), 631-636. MR**973380 (89k:76071)****[18]**M. Slemrod,*Admissibility criterion for propagating phase boundaries in a van der Waals fluid*, Arch. Rational Mech. Anal.**81**(1983), 301-315. MR**683192 (84a:76030)****[19]**-,*Dynamics of first order phase transitions*, Phase Transformations and Material Instabilities in Solids (M. Gurtin, ed.), Academic Press, New York, 1984, pp. 163-203. MR**802225****[20]**-,*A limiting "viscosity" approach to the Riemann problem for materials exhibiting change of phase*, Arch. Rational Mech. Anal.**105**(1989), 327-365. MR**973246 (89m:35186)****[21]**M. Slemrod and A. Tzavaras,*A limiting viscosity approach for the Riemann problem in isentropic gas dynamics*, Indiana Univ. Math. J. (submitted).**[22]**M. Slemrod,*Remarks on the travelling wave theory of the dynamics of phase trasitions*, preprint, 1989. MR**1025456 (91c:35025)****[23]**V. A. Tupciev,*The asymptotic behavior of the solutions of Cauchy problem for the equation**that degenerates for**into the problem of the decay of an arbitrary discontinuity for the case of a rarefaction wave*, Zh. Vychisl. Mat. i Mat. Fiz.**12**(1972), 770-775; English transl., U.S.S.R. Comput. Math. and Math. Phys.**12**. MR**0306689 (46:5811)****[24]**-,*On the method of introducing viscosity in the study of problems involving the decay of discontinuity*, Dokl. Akad. Nauk SSSR**211**(1973), 55-58. MR**0330801 (48:9138)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L65,
76L05

Retrieve articles in all journals with MSC: 35L65, 76L05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1104200-7

Keywords:
Viscosity-capillarity travelling wave criterion

Article copyright:
© Copyright 1992
American Mathematical Society