The set of all iterates is nowhere dense in

Author:
A. M. Blokh

Journal:
Trans. Amer. Math. Soc. **333** (1992), 787-798

MSC:
Primary 26A18; Secondary 58F08

MathSciNet review:
1153009

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if a mixing map belongs to the -closure of the set of iterates and , then is an iterate itself. Together with some one-dimensional techniques it implies that the set of all iterates is nowhere dense in giving the final answer to the question of A. Bruckner, P. Humke and M. Laczkovich.

**[ABL]**S. J. Agronsky, A. M. Bruckner, and M. Laczkovich,*Dynamics of typical continuous functions*, J. London Math. Soc. (2)**40**(1989), no. 2, 227–243. MR**1044271**, 10.1112/jlms/s2-40.2.227**[BC]**Louis Block and Ethan M. Coven,*Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval*, Trans. Amer. Math. Soc.**300**(1987), no. 1, 297–306. MR**871677**, 10.1090/S0002-9947-1987-0871677-X**[BGMY]**Louis Block, John Guckenheimer, Michał Misiurewicz, and Lai Sang Young,*Periodic points and topological entropy of one-dimensional maps*, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR**591173****[B1]**A. M. Blokh,*Sensitive mappings of an interval*, Uspekhi Mat. Nauk**37**(1982), no. 2(224), 189–190 (Russian). MR**650765****[B2]**-,*The "spectral" decomposition for one-dimensional maps*, Inst. for Math. Sci., SUNY at Stony Brook, Preprint #1991/14, September 1991; Dynamics Reported (to appear).**[HL1]**Paul D. Humke and Miklós Laczkovich,*Approximations of continuous functions by squares*, Ergodic Theory Dynam. Systems**10**(1990), no. 2, 361–366. MR**1062763**, 10.1017/S0143385700005599**[HL2]**Paul D. Humke and M. Laczkovich,*The Borel structure of iterates of continuous functions*, Proc. Edinburgh Math. Soc. (2)**32**(1989), no. 3, 483–494. MR**1015490**, 10.1017/S0013091500004727**[S1]**K. Simon,*Typical continuous functions are not iterates*, Acta Math. Hungar.**55**(1990), no. 1-2, 133–134. MR**1077067**, 10.1007/BF01951395**[S2]**Károly Simon,*The set of second iterates is nowhere dense in 𝐶*, Proc. Amer. Math. Soc.**111**(1991), no. 4, 1141–1150. MR**1033961**, 10.1090/S0002-9939-1991-1033961-5**[S3]**K. Simon,*The iterates are not dense in 𝐶*, Math. Pannon.**2**(1991), no. 1, 71–76. MR**1119725**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
26A18,
58F08

Retrieve articles in all journals with MSC: 26A18, 58F08

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1992-1153009-7

Keywords:
Iterates of maps,
mixing maps,
periodic points

Article copyright:
© Copyright 1992
American Mathematical Society