Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

QED domains and NED sets in $ \overline{\bf R}{}\sp n$


Author: Shan Shuang Yang
Journal: Trans. Amer. Math. Soc. 334 (1992), 97-120
MSC: Primary 30C65
DOI: https://doi.org/10.1090/S0002-9947-1992-1065605-6
MathSciNet review: 1065605
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper contributes to the theory of quasiextremal distance (or $ {\text{QED}}$) domains. We associate with every $ {\text{QED}}$ domain $ D$ two $ {\text{QED}}$ constants $ M(D)$ and $ {M^{\ast} }(D)$ and exhibit how these constants reflect the geometry of $ D$. For example, we give a geometric characterization for $ {\text{QED}}$ domains $ D$ with $ {M^{\ast}}(D) = 2$ and obtain some sharp estimates of $ {\text{QED}}$ constants $ M(D)$ and $ {M^{\ast} }(D)$ for different kinds of domains.


References [Enhancements On Off] (What's this?)

  • [A] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, N.J., 1966. MR 0200442 (34:336)
  • [AB] L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129. MR 0036841 (12:171c)
  • [AS] V. Aseev and A. Syčev, On sets which are removable for quasi-conformal space mappings, Sibirsk. Mat. Z. 15 (1974), 1213-1227. (Russian) MR 0355039 (50:7516)
  • [BA] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. MR 0086869 (19:258c)
  • [G1] F. W. Gehring, Quasiconformal mappings, Complex Analysis and Its Applications, vol. 2, Internat. Atomic Energy Agency, Vienna, 1976, pp. 213-268. MR 0480997 (58:1144)
  • [G2] -, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519. MR 0132841 (24:A2677)
  • [G3] -, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1963), 353-393. MR 0139735 (25:3166)
  • [G4] -, Univalent functions and the Schwarzian derivatives, Comment Math. Helv. 52 (1977), 561-572. MR 0457701 (56:15905)
  • [GM] F. W. Gehring and O. Martio, Quasiextremal distance domains and extension of quasiconformal mappings, J. Analyse Math. 45 (1985), 181-206. MR 833411 (87j:30043)
  • [GV] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1-70. MR 0180674 (31:4905)
  • [GLM] S. Granlund, P. Lindqvist and O. Martio, Conformally invariant variational integrals, Trans. Amer. Math. Soc. 277 (1983), 43-73. MR 690040 (84f:30030)
  • [HK] D. A. Herron and P. Koskela, Quasiextremal distance domains and conformal mappings onto circle domains, Complex Variables 15 (1990), 167-179. MR 1074059 (91k:30054)
  • [H] J. Hesse, A $ p$-extremal length and $ p$-capacity equality, Ark. Mat. 13 (1975), 131-144. MR 0379871 (52:776)
  • [HY] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, London, 1961. MR 0125557 (23:A2857)
  • [K] R. Kühnau, Möglichst konforme Spiegelung an einer Jordankurve, Jber. Deutsch. Math.-Verein. 90 (1988), 90-109. MR 939755 (89d:30023)
  • [M1] G. J. Martin, Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric, Trans. Amer. Math. Soc. 292 (1985), 169-191. MR 805959 (87a:30037)
  • [M2] V. G. Maz'ja, Sobolev spaces, Springer-Verlag, Berlin, 1985. MR 817985 (87g:46056)
  • [N] M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge, 1964. MR 0044820 (13:483a)
  • [V1] J. Väisälä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin, 1971.
  • [V2] -, On the null-sets for extremal distances, Ann. Acad. Sci. Fenn. Ser. A I Math. 322 (1962), 1-12. MR 0147633 (26:5148)
  • [Y1] S. Yang, Monotone functions and extremal functions for condensers in $ {\overline{\mathbb{R}}^n}$, Ann. Acad. Sci. Fenn Ser. A I Math. 16 (1991), 95-112. MR 1127699 (93a:30027)
  • [Y2] -, Coefficients of quasiextremal distance and quasiconformality of domains in $ {\overline{\mathbb{R}}^n}$, Institut Mittag-Leffler, Report No. 30, 1989/90.
  • [Z] W. P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171-178. MR 0237725 (38:6006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C65

Retrieve articles in all journals with MSC: 30C65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1065605-6
Keywords: $ {\text{QED}}$ domain, $ {\text{NED}}$ set, modulus of a curve family, conformal capacity, quasiconformal mapping, quasiconformal reflection, quasicircle
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society