Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stable-homotopy and homology invariants of boundary links


Author: Michael Farber
Journal: Trans. Amer. Math. Soc. 334 (1992), 455-477
MSC: Primary 57Q45; Secondary 55P42
DOI: https://doi.org/10.1090/S0002-9947-1992-1079054-8
MathSciNet review: 1079054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An $ n$-dimensional $ (n \geq 5)$ link in the $ (n + 2)$-dimensional sphere is stable if the $ i$th homotopy group of its complement $ X$ vanishes for $ 2 \leq i \leq (n + 1)/3$ and $ {\pi _1}(X)$ is freely generated by meridians. In this paper a classification of stable links in terms of stable homotopy theory is given. For simple links this classification gives a complete algebraic description.

We also study Poincaré duality in the space of the free covering of the complement of a boundary link. The explicit computation of the corresponding Ext-functors gives a construction of new homology pairings, generalizing the Blanchfield and the torsion pairings for knots.


References [Enhancements On Off] (What's this?)

  • [B] R. C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340-356. MR 0085512 (19:53a)
  • [CS] S. E. Cappell and J. L. Shaneson, Link cobordism, Comment. Math. Helv. 55 (1980), 29-49. MR 569244 (81j:57011)
  • [C] P. M. Cohn, Free rings and their relations, Academic Press, London, New York, 1971. MR 0371938 (51:8155)
  • [D] J. Duval, Forme de Blanchfield et cobordisme d'entrelacs bords, Comment. Math. Helv. 61 (1986), 617-635. MR 870709 (88a:57037)
  • [EC] S. Eilenberg and H. Cartan, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 0077480 (17:1040e)
  • [F1] M. Farber, Duality in an infinite cyclic covering and even-dimensional knots, Math. USSR-Izv. 11 (1977), no 4, 749-781. MR 0515677 (58:24279)
  • [F2] -, Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261 (1980), 185-210. MR 576871 (81k:57016)
  • [F3] -, Classification of simple knots, Russian Math. Surveys 38 (1983), 63-117. MR 718824 (85g:57012)
  • [F4] -, An algebraic classification of some even-dimensional spherical knots. I, II, Trans. Amer. Math. Soc. 281 (1984), 507-527, 529-570. MR 722762 (85c:57022)
  • [F5] -, Hermitian forms on link modules, Comment. Math. Helv. 66 (1991), 189-236. MR 1107839 (92j:57014)
  • [Fr] P. Freyd, Splitting homotopy idempotents, Proc. Conf. on Categorical Algebra (La Jolla, 1965), Springer-Verlag, Berlin-Heidelberg-New York, 1966. MR 0206069 (34:5894)
  • [G] M. A. Gutiérrez, Boundary links and an unlinking theorem, Trans. Amer. Math. Soc. 171 (1972), 491-499. MR 0310902 (46:10000)
  • [K1] C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79 (1973), 952-955. MR 0324706 (48:3056)
  • [K2] -, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), 141-160. MR 0358796 (50:11255)
  • [KL] C. Kearton and W. B. R. Lickorish, Piecewise linear critical levels and collapsing, Trans. Amer. Math. Soc. 170 (1972), 415-424. MR 0310899 (46:9997)
  • [K] M. A. Kervaire, Knot cobordism in codimension two, Lecture Notes in Math., vol. 197, Springer-Verlag, 1970, pp. 83-105. MR 0283786 (44:1016)
  • [Ko] K. H. Ko, Seifert matrices and boundary link cobordisms, Trans. Amer. Math. Soc. 299 (1987), 657-681. MR 869227 (88h:57018)
  • [Ko1] -, Seifert matrices and boundary links, Ph.D. thesis, Brandeis University, 1984.
  • [L1] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 0200922 (34:808)
  • [L2] -, Knot cobordism group in codimension two, Comment. Math. Helv. 44 (1969), 229-244. MR 0246314 (39:7618)
  • [L3] -, An algebaic classification of some knots of codimension two, Comment. Math. Helv. 45 185-198 (1970). MR 0266226 (42:1133)
  • [L4] -, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1-50. MR 0461518 (57:1503)
  • [L] C. Liang, An algebraic classification of some links of codimension two, Proc. Amer. Math. Soc. 67 (1977), 147-151. MR 0458439 (56:16642)
  • [M1] J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137-147. MR 0141115 (25:4526)
  • [M2] -, Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115-133. MR 0242163 (39:3497)
  • [Mio] W. Mio, On boundary link cobordism, Math. Proc. Cambridge Philos. Soc. 101 (1987), 259-266. MR 870597 (88e:57023)
  • [Tr] H. F. Trotter, On $ S$-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173-207. MR 0645546 (58:31100)
  • [S] N. Sato, Free coverings and modules of boundary links, Trans. Amer. Math. Soc. 264 (1981), 499-505. MR 603777 (82j:57020)
  • [Sm] N. Smythe, Boundary links, Wisconsin Topology Seminar, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N.J., 1965.
  • [St] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, 1968. MR 0248858 (40:2108)
  • [W] C. T. C. Wall, Classification problems in differential topology. IV, Thickenings, Topology 5 (1966), 73-94. MR 0192509 (33:734)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57Q45, 55P42

Retrieve articles in all journals with MSC: 57Q45, 55P42


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1079054-8
Keywords: Link of codimension two, Seifert surface, Spanier-Whitehead duality
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society