Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The monotonicity of the entropy for a family of degree one circle maps


Authors: Lluís Alsedà and Francesc Mañosas
Journal: Trans. Amer. Math. Soc. 334 (1992), 651-684
MSC: Primary 58F11; Secondary 54C70, 54H20, 58F08, 58F20
DOI: https://doi.org/10.1090/S0002-9947-1992-1129433-5
MathSciNet review: 1129433
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the natural biparametric family of piecewise linear circle maps with two pieces we show that the entropy increases when any of the two parameters increases. We also describe the regions of the parameter space where the monotonicity is strict.


References [Enhancements On Off] (What's this?)

  • [ALMM] Ll. Alsedà, J. Llibre, F. Mañosas, and M. Misiurewicz, Lower bounds of the topological entropy for continuous maps of the circle of degree one, Nonlinearity 1 (1988), 463-479. MR 955624 (89m:58119)
  • [ALMS] Ll. Alsedà, J. Llibre, M. Misiurewicz, and C. Simó, Twist periodic orbits and topological entropy of continuous maps of the circle of degree one which have a fixed point, Ergodic Theory Dynamical Systems 5 (1985), 501-517. MR 829854 (87h:58185)
  • [AM] Ll. Alsedà and F. Mañosas, Kneading theory and rotation intervals for a class of circle maps of degree one, Nonlinearity 3 (1990), 413-452. MR 1054582 (91e:58090)
  • [BMT] K. Brucks, M. Misiurewicz, and Ch. Tresser, Monotonicity properties of the family of trapezoidal maps, Comm. Math. Phys. 137 (1991), 1-12. MR 1099253 (92e:58108)
  • [DH] A. Douady and J. H. Hubbard, Etude dynamique des polynomes complexes I and II, Publ. Math. Orsay, 84-02 (1984) and 85-04 (1985).
  • [MT] J. Milnor and W. Thurston, On iterated maps of interval. I, II, Lecture Notes in Math., vol. 1342, Springer-Verlag, Berlin and New York, 1988, pp. 465-563. MR 970571 (90a:58083)
  • [M] M. Misiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynamical Systems 2 (1982), 221-227. MR 693977 (84j:58101)
  • [MV] M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. H. Poincaré Probab. Stat. 27 (1991), 125-140. MR 1098567 (92c:58064)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F11, 54C70, 54H20, 58F08, 58F20

Retrieve articles in all journals with MSC: 58F11, 54C70, 54H20, 58F08, 58F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1129433-5
Keywords: Kneading theory, monotonicity, topological entropy
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society