Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Single loop space decompositions

Author: David J. Anick
Journal: Trans. Amer. Math. Soc. 334 (1992), 929-940
MSC: Primary 55P35; Secondary 55Q20
MathSciNet review: 1145728
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The method of single loop space decompositions, in which $ \Omega X$ is factored into minimal factors, is an important one for understanding the unstable homotopy of many simply-connected spaces $ X$. This paper begins with a survey of the major known theorems along these lines. We then give a necessary and sufficient condition for $ \Omega X$ to be decomposable as a product of spaces belonging to a certain list. We conclude with a nontrivial instance of an application of this condition.

References [Enhancements On Off] (What's this?)

  • [AH] J. F. Adams and P. J. Hilton, On the chain algebra of a loop spaces, Comment. Math. Helv. 30 (1955), 305-330. MR 0077929 (17:1119b)
  • [A1] D. J. Anick, A loop space whose homology has torsion of all orders, Pacific J. Math. 123 (1986), 257-262. MR 840843 (87k:55010)
  • [A2] -, On homotopy exponents for spaces of category two, Lecture Notes in Math., vol. 1370, Springer-Verlag, Berlin-New York, 1989, pp. 24-52. MR 1000365 (90c:55010)
  • [A3] -, Hopf algebras up to homotopy, J. Amer. Math. Soc. 2 (1989), 417-453. MR 991015 (90c:16007)
  • [B] H. J. Baues, Commutator calculus and groups of homotopy classes, London Math. Soc. Lecture Note Ser., no. 50, Cambridge Univ. Press, Cambridge-New York, 1981. MR 634675 (83b:55012)
  • [BF] J. Backelin and R. Fröberg, Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures Appl. 30 (1985), 85-98. MR 789425 (87c:16002)
  • [CMN1] F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), 121-168. MR 519355 (80e:55024)
  • [CMN2] -, Exponents in homotopy theory, Algebraic Topology and Algebraic $ K$-Theory (W. Browder, ed.), Ann. of Math. Stud., no. 113, Princeton Univ. Press, Princeton, N.J., 1987, pp. 3-34. MR 921471 (89d:55035)
  • [H] P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172. MR 0068218 (16:847d)
  • [J] I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197. MR 0073181 (17:396b)
  • [L] C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda $ \operatorname{Ext}$-algebra, Thesis, Report No. 5, Math. Inst., Stockholm Univ., Sweden, 1976.
  • [MW] C. McGibbon and C. Wilkerson, Loop spaces of finite complexes at large primes, Proc. Amer. Math. Soc. 96 (1986), 698-702. MR 826505 (87h:55015)
  • [N1] J. A. Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc., No. 232 (1980). MR 567801 (81b:55035)
  • [N2] -, The exponent of a Moore space, Algebraic Topology and Algebraic $ K$-Theory (W. Browder, ed.), Ann. of Math. Stud., no. 113, Princeton Univ. Press, Princeton, N.J., 1987, pp. 35-71. MR 921472 (89e:55029)
  • [NS] J. A. Neisendorfer and P. Selick, Some examples of spaces with or without exponents, Canad. Math. Soc. Conf. Proc., vol. 2, Part 1, Amer. Math. Soc., Providence, R.I., 1982, pp. 343-357. MR 686124 (84b:55017)
  • [S] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. (2) 54 (1951), 425-505. MR 0045386 (13:574g)
  • [Sm] L. Smith, Split extensions of Hopf algebras and semi-tensor products, Math. Scand. 26 (1970), 17-41. MR 0260848 (41:5468)
  • [W] C. Wilkerson, Genus and cancellation, Topology 14 (1975), 29-36. MR 0367995 (51:4237)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P35, 55Q20

Retrieve articles in all journals with MSC: 55P35, 55Q20

Additional Information

Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society