Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Subgroups of Bianchi groups and arithmetic quotients of hyperbolic $ 3$-space


Authors: Fritz Grunewald and Joachim Schwermer
Journal: Trans. Amer. Math. Soc. 335 (1993), 47-78
MSC: Primary 11F06; Secondary 20H25, 22E40, 57N10
DOI: https://doi.org/10.1090/S0002-9947-1993-1020042-6
MathSciNet review: 1020042
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{O}$ be the ring of integers in an imaginary quadratic number-field. The group $ {\text{PSL}}_2(\mathcal{O})$ acts discontinuously on hyperbolic $ 3$-space $ H$. If $ \Gamma \leq {\text{PSL}}_2(\mathcal{O})$ is a torsionfree subgroup of finite index then the manifold $ \Gamma \backslash H$ can be compactified to a manifold $ {M_\Gamma }$ so that the inclusion $ \Gamma \backslash H \leq {M_\Gamma }$ is a homotopy equivalence. $ {M_\Gamma }$ is a compact with boundary. The boundary being a union of finitely many $ 2$-tori. This paper contains a computer-aided study of subgroups of low index in $ {\text{PSL}}_2(\mathcal{O})$ for various $ \mathcal{O}$. The explicit description of these subgroups leads to a study of the homeomorphism types of the $ {M_\Gamma }$.


References [Enhancements On Off] (What's this?)

  • [1] P. Bauer, Linkaussenräume und $ 2$-dimensionaler Deformationsretrakt von arithmetischen Quotienten $ \Gamma \backslash H$, Diplomarbeit, Bonn, 1987.
  • [2] L. Bianchi, Geometrische Darstellung der Gruppen linearer Substitutionen mit ganzen complexen Coeffizienten nebst Anwendungen auf die Zahlentheorie, Math. Ann. 38 (1891), 313-333. MR 1510677
  • [3] -, Sui gruppi di sostituzioni con coefficienti appartenenti a corpi quadratici imaginari, Math. Ann. 40 (1892), 332-412. MR 1510727
  • [4] A. Brunner, M. Frame, Y. Lee and N. Wielenberg, Classifying torsion-free subgroups of the Picard group, Trans. Amer. Math. Soc. 282 (1984), 205-235. MR 728710 (85h:57012)
  • [5] A. Brunner, Y. Lee and N. Wielenberg, Polyhedral groups and graph amalgamation products, Topology Appl. 20 (1985), 289-304. MR 804041 (87a:57049)
  • [6] L. Clozel, On the cuspidal cohomology of arithmetic subgroups of $ {\text{SL(2}}n)$ and the first Betti number of arithmetic $ 3$-manifolds, Duke Math. J. 55 (1987), 475-486. MR 894591 (88m:22022)
  • [7] H. Coxeter and W. Moser, Generators and relations for discrete groups, Ergeb. Math. Grenzgeb., Neue Folge, Bd. 14, Springer, Berlin, Heidelberg, New York, 1965. MR 0174618 (30:4818)
  • [8] J. E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), 275-323. MR 743014 (85j:11063)
  • [9] J. Elstrodt, F. Grunewald and J. Mennicke, $ {\text{PSL(2)}}$ over imaginary quadratic integers, Astérisque 94 (1982), 43-60. MR 702365 (84g:10051)
  • [10] B. Fine and M. Newman, The normal subgroup structure of the Picard group, Trans. Amer. Math. Soc. 302 (1987), 769-786. MR 891646 (88d:20070)
  • [11] D. Flöge, Zur Struktur der $ {\text{PSL}}_2$ über einigen imaginar quadratischen Zahlringen, Math. Z. 183 (1983), 255-279. MR 704107 (85c:11043)
  • [12] R. Fox, Free differential calculus. II, Ann. of Math. (2) 59 (1954), 196-210. MR 0062125 (15:931e)
  • [13] F. Grunewald and J. Mennicke, $ {\text{SL}}_2(O)$ and elliptic curves, Manuscript, Bielefeld, 1978.
  • [14] F. Grunewald, H. Helling and J. Mennicke, $ {\text{SL}}_2$ over complex quadratic number fields. I, Algebra i Logika 17 (1978), 512-580. MR 555260 (81e:10021)
  • [15] F. Grunewald and J. Schwermer, Free non-abelian quotients of $ {\text{SL}}_2$ over orders of imaginary quadratic number fields, J. Algebra 69 (1981), 294-304. MR 617080 (82i:10027)
  • [16] -, Arithmetic quotients of hyperbolic $ 3$-space, cusp forms and link complements, Duke Math. J. 48 (1981), 351-358. MR 620254 (82j:10046)
  • [17] -, A non-vanishing theorem for the cuspidal cohomology of $ {\text{SL}}_2$ over imaginary quadratic integers, Math. Ann. 258 (1981), 183-200.
  • [18] G. Harder, Period integrals of Eisenstein cohomology classes and special values of some $ L$-functions, Number Theory Related to Fermat's Last Theorem, (N. Koblitz, ed.), Progress in Math., vol. 26, Birkhäuser, Stuttgart and Basel, 1982, pp. 103-142. MR 685293 (85e:11037)
  • [19] A. Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2) 27 (1983), 345-355. MR 692540 (84m:57005)
  • [20] G. Havas, A Reidemeister-Schreier Program, Proceedings of the Second International Conference on Group Theory, Lecture Notes in Math., vol. 372, Springer-Verlag, Berlin, Heidelberg, New York, pp. 347-356. MR 0376827 (51:13002)
  • [21] G. Havas and S. Sterling, Integer matrices and abelian groups, EUROSAM '79, pp. 431-451, International Symposium on Symbolic and Algebraic Manipulation, Marseille (1975), Lecture Notes in Computer Science, no. 72, Springer-Verlag, Berlin, Heidelberg, New York. MR 575704 (83e:65057)
  • [22] G. Havas, P. E. Kenne, J. S. Richardson and E. F. Robertson, A Tietze transformation program, Computational Group Theory, (M. D. Atkinson, ed.), Academic Press, New York, 1984. MR 760651 (86b:20039)
  • [23] P. Hilton and U. Stammbach, A course in homological algebra, Graduate Texts in Math. no. 4, Springer-Verlag, Berlin, Heidelberg, New York, 1978. MR 1438546 (97k:18001)
  • [24] N. Krámer, Beiträge zur Arithmetik imaginär quadratischer Zahlkörper, Bonner Math. Schriften, vol. 191, Bonn, 1985.
  • [25] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, London, Sydney, 1966. MR 0207802 (34:7617)
  • [26] E. Mendoza, Cohomology of $ PG{L_2}$ over imaginary quadratic integers, Bonner Math. Schriften, vol. 128, Bonn, 1980.
  • [27] G. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, no. 78, Princeton Univ. Press, Princeton, N.J., 1973. MR 0385004 (52:5874)
  • [28] J. Neubüser, An elementary introduction to coset table methods in computational group theory, Groups St. Andrews 1981 (C. M. Campbell and E. F. Robertson, eds.), LMS Lecture Notes, vol. 71, Cambridge Univ. Press, London and New York.
  • [29] E. Picard, Sur une groupe des transformations des points l'espace situés du même coté d'un plan, Bull. Soc. Math. France 12 (1894), 43-47. MR 1503932
  • [30] H. Poincaré, Mémoire sur les groupes kleinéens, Acta Math. 3 (1883), 49-92 (= Oeuvres, vol. 2, pp. 258-299).
  • [31] G. Prasad, Strong rigidity of $ \mathbb{Q}$-rank $ 1$ lattices, Invent. Math. 21 (1973), 255-286. MR 0385005 (52:5875)
  • [32] R. Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281-288. MR 0412416 (54:542)
  • [33] -, Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra, Math. Comp. 40 (1983), 607-632. MR 689477 (85b:20064)
  • [34] J. Rohlfs, On the cuspidal cohomology of the Bianchi modular groups, Math. Z. 186 (1985), 253-269. MR 772354 (86e:11042)
  • [35] D. Rolfsen, Knots and links, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
  • [36] J. Schwermer, A note on link complements and arithmetic groups, Math. Ann. 249 (1980), 107-110. MR 578717 (82e:22027)
  • [37] J. Schwermer and K. Vogtmann, The integral homology of $ {\text{SL}}_2$ and $ {\text{PSL}}_2$ of Euclidean imaginary quadratic integers, Comment. Math. Helv. 58 (1983), 573-598. MR 728453 (86d:11046)
  • [38] J. P. Serre, Le problème des groupes de congruence pour $ {\text{SL}}_2$, Ann. of Math. (2) 92 (1972), 489-527. MR 0272790 (42:7671)
  • [39] T. A. Springer, Invariant theory, Lecture Notes in Math., vol. 585, Springer-Verlag, Berlin, Heidelberg, New York, 1977. MR 0447428 (56:5740)
  • [40] R. Swan, Generators and relations for certain special linear groups, Adv. in Math. 6 (1971), 1-78. MR 0284516 (44:1741)
  • [41] W. P. Thurston, The geometry and topology of $ 3$-manifolds, Lecture Notes, Princeton Univ. Press, Princeton, N.J., 1978.
  • [42] -, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381. MR 648524 (83h:57019)
  • [43] K. Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), 399-419. MR 799670 (87a:22025)
  • [44] N. Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Cambridge Philos. Soc. 84 (1978), 427-436. MR 503003 (80b:57010)
  • [45] -, Polyhedral orbifold groups, Low-Dimensional Topology and Kleinian Groups, (D. B. A. Epstein, ed.), London Math. Soc. 112, Cambridge Univ. Press, Cambridge, 1986. MR 903856 (88c:57004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F06, 20H25, 22E40, 57N10

Retrieve articles in all journals with MSC: 11F06, 20H25, 22E40, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1020042-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society