Actions of linearly reductive groups on PI-algebras

Author:
Nikolaus Vonessen

Journal:
Trans. Amer. Math. Soc. **335** (1993), 425-442

MSC:
Primary 16W20; Secondary 16P40, 16R99

DOI:
https://doi.org/10.1090/S0002-9947-1993-1076618-3

MathSciNet review:
1076618

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a linearly reductive group acting rationally on a -algebra . We study the relationship between and the fixed ring , generalizing earlier results obtained under the additional hypothesis that is affine.

**[BI]**G. M. Bergman and I. M. Isaacs,*Rings with fixed-point-free group actions*, Proc. London Math. Soc.**27**(1973), 69-87. MR**0346017 (49:10743)****[BS]**G. M. Bergman and L. M. Small, -*degrees and prime ideals*, J. Algebra**33**(1975), 435-462. MR**0360682 (50:13129)****[B]**W. Borho,*On the Joseph-Small additivity principle for Goldie rank*, Comput. Math.**47**(1982), 3-29. MR**668778 (84a:17007)****[BV]**A. Braun and N. Vonessen,*Integrality for*-*rings*, J. Algebra (to appear). MR**1182014 (94g:16034)****[C]**W. Chin,*Actions of solvable algebraic groups on noncommutative rings*, J. Contemp. Math.**124**(1992), 29-38. MR**1144026 (93d:16032)****[FS]**D. Farkas and R. Snider,*Noetherian fixed rings*, Pacific J. Math**69**(1977), 347-353. MR**0444714 (56:3064)****[JS]**A. Joseph and L. W. Small,*An additivity principle for Goldie rank*, Israel J. Math.**31**(1978), 105-114. MR**516246 (80j:17005)****[L]**E. Letzter,*Prime ideals in finite extensions of Noetherian rings*, J. Algebra**135**(1990), 412-439. MR**1080857 (91m:16020)****[MR]**J. C. McConnell and J. C. Robson,*Noncommutative Noetherian rings*, Wiley-Interscience, New York, 1988. MR**934572 (89j:16023)****[M]**S. Montgomery,*Fixed rings of finite automorphism groups of associative rings*, Lecture Notes in Math., vol. 818, Springer-Verlag, 1980. MR**590245 (81j:16041)****[M]**-,*Prime ideals in fixed rings*, Comm. Algebra**9**(1981), 423-449. MR**605031 (82c:16034)****[M]**-,*Prime ideals and group actions in non-commutative algebras*, Contemp. Math.**88**(1989), 103-124.**[MS]**S. Montgomery and L. W. Small,*Integrality and prime ideals in fixed rings of*.*rings*, J. Pure Appl. Algebra**31**(1984), 185-190. MR**738213 (85i:16020)****[R]**L. H. Rowen,*Polynomial identities in ring theory*, Academic Press, New York, 1980. MR**576061 (82a:16021)****[S]**W. Schelter,*Integral extensions of rings satisfying a polynomial identity*, J. Algebra**40**(1976), 245-257; Errata,**44**(1977), 576. MR**0417238 (54:5295)****[I, V]**N. Vonessen,*Actions of linearly reductive groups on affine*-*algebras*, Mem. Amer. Math. Soc. No. 414(1989). MR**990363 (90i:16014)****[V]**-,*Prime ideals in intermediate integral centralizing extensions of*-*rings*, Comm. Algebra**19**(1991), 795-802. MR**1102986 (92b:16036)****[W]**R. B. Warfield,*Prime ideals in ring extensions*, J. London Math. Soc.**28**(1983), 453-460. MR**724714 (85e:16006)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16W20,
16P40,
16R99

Retrieve articles in all journals with MSC: 16W20, 16P40, 16R99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1076618-3

Keywords:
-algebras,
group actions,
linearly reductive groups,
Noetherian rings,
inner automorphisms

Article copyright:
© Copyright 1993
American Mathematical Society