Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Actions of linearly reductive groups on PI-algebras


Author: Nikolaus Vonessen
Journal: Trans. Amer. Math. Soc. 335 (1993), 425-442
MSC: Primary 16W20; Secondary 16P40, 16R99
DOI: https://doi.org/10.1090/S0002-9947-1993-1076618-3
MathSciNet review: 1076618
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a linearly reductive group acting rationally on a $ {\text{PI}}$-algebra $ R$. We study the relationship between $ R$ and the fixed ring $ {R^G}$ , generalizing earlier results obtained under the additional hypothesis that $ R$ is affine.


References [Enhancements On Off] (What's this?)

  • [BI] G. M. Bergman and I. M. Isaacs, Rings with fixed-point-free group actions, Proc. London Math. Soc. 27 (1973), 69-87. MR 0346017 (49:10743)
  • [BS] G. M. Bergman and L. M. Small, $ PI$-degrees and prime ideals, J. Algebra 33 (1975), 435-462. MR 0360682 (50:13129)
  • [B] W. Borho, On the Joseph-Small additivity principle for Goldie rank, Comput. Math. 47 (1982), 3-29. MR 668778 (84a:17007)
  • [BV] A. Braun and N. Vonessen, Integrality for $ PI$-rings, J. Algebra (to appear). MR 1182014 (94g:16034)
  • [C] W. Chin, Actions of solvable algebraic groups on noncommutative rings, J. Contemp. Math. 124 (1992), 29-38. MR 1144026 (93d:16032)
  • [FS] D. Farkas and R. Snider, Noetherian fixed rings, Pacific J. Math 69 (1977), 347-353. MR 0444714 (56:3064)
  • [JS] A. Joseph and L. W. Small, An additivity principle for Goldie rank, Israel J. Math. 31 (1978), 105-114. MR 516246 (80j:17005)
  • [L] E. Letzter, Prime ideals in finite extensions of Noetherian rings, J. Algebra 135 (1990), 412-439. MR 1080857 (91m:16020)
  • [MR] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Wiley-Interscience, New York, 1988. MR 934572 (89j:16023)
  • [M$ _1$] S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Math., vol. 818, Springer-Verlag, 1980. MR 590245 (81j:16041)
  • [M$ _2$] -, Prime ideals in fixed rings, Comm. Algebra 9 (1981), 423-449. MR 605031 (82c:16034)
  • [M$ _3$] -, Prime ideals and group actions in non-commutative algebras, Contemp. Math. 88 (1989), 103-124.
  • [MS] S. Montgomery and L. W. Small, Integrality and prime ideals in fixed rings of $ P.I$. rings, J. Pure Appl. Algebra 31 (1984), 185-190. MR 738213 (85i:16020)
  • [R] L. H. Rowen, Polynomial identities in ring theory, Academic Press, New York, 1980. MR 576061 (82a:16021)
  • [S] W. Schelter, Integral extensions of rings satisfying a polynomial identity, J. Algebra 40 (1976), 245-257; Errata, 44 (1977), 576. MR 0417238 (54:5295)
  • [I, V$ _1$] N. Vonessen, Actions of linearly reductive groups on affine $ PI$-algebras, Mem. Amer. Math. Soc. No. 414(1989). MR 990363 (90i:16014)
  • [V$ _2$] -, Prime ideals in intermediate integral centralizing extensions of $ PI$-rings, Comm. Algebra 19 (1991), 795-802. MR 1102986 (92b:16036)
  • [W] R. B. Warfield, Prime ideals in ring extensions, J. London Math. Soc. 28 (1983), 453-460. MR 724714 (85e:16006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16W20, 16P40, 16R99

Retrieve articles in all journals with MSC: 16W20, 16P40, 16R99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1076618-3
Keywords: $ {\text{PI}}$-algebras, group actions, linearly reductive groups, Noetherian rings, inner automorphisms
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society