A SHORT PROOF OF ZHELUDEV'S THEOREM

F. GESZTESY AND B. SIMON

Abstract. We give a short proof of Zheludev's theorem that states the existence of precisely one eigenvalue in sufficiently distant spectral gaps of a Hill operator subject to certain short-range perturbations. As a by-product we simultaneously recover Rofe-Beketov's result about the finiteness of the number of eigenvalues in essential spectral gaps of the perturbed Hill operator. Our methods are operator theoretic in nature and extend to other one-dimensional systems such as perturbed periodic Dirac operators and weakly perturbed second order finite difference operators. We employ the trick of using a selfadjoint Birman-Schwinger operator (even in cases where the perturbation changes sign), a method that has already been successfully applied in different contexts and appears to have further potential in the study of point spectra in essential spectral gaps.

Our main hypothesis reads:
(I) Let \(V \in L^1_{\text{loc}}(\mathbb{R}) \) be real-valued and of period \(a > 0 \), and suppose \(W \in L^1(\mathbb{R}, (1 + |x|)\,dx) \) to be real-valued, \(W \neq 0 \) on a set of positive Lebesgue measure.

Given \(V \), one defines the Hill operator \(H_0 \) in \(L^2(\mathbb{R}) \) as the form sum of the Laplacian in \(L^2(\mathbb{R}) \),

\[
-\frac{d^2}{dx^2} \text{ on } H^2(\mathbb{R}),
\]

and the operator of multiplication by \(V \),

\[
H_0 := -\frac{d^2}{dx^2} + V.
\]

(To be more precise, since \(V \) is not assumed to be continuous, we should define \(H_0 \) as a direct integral over reduced operators on \(L^2([0, a]) \), see [12, §XIII.16].)

Similarly, the perturbed Hill operator \(H_g \) is defined as the form sum in \(L^2(\mathbb{R}) \)

\[
H_g := H_0 + gW, \quad g > 0.
\]

Standard spectral theory [2, 10, 11, 12] then yields that

\[
\sigma(H_0) = \sigma_{\text{ac}}(H_0) = \bigcup_{n \in \mathbb{N}} [E_{2(n-1)}, E_{2n-1}],
\]

\[
-\infty < E_0 < E_1 < E_2 < E_3 \leq E_4 < \cdots
\]
The spectral gaps of H_0 (the essential spectral gaps of H_g) are denoted by

$$\rho_n := \{E_{2n-1}, E_{2n}\}, \quad E_{2n-1} < E_{2n}, \quad n \in \mathbb{N}. $$

Moreover one has

$$\sigma_p(H_g) \subset \bigcup_{n \in \mathbb{N}_0} \rho_n$$

and all eigenvalues of H_g are simple. (Here $\sigma(\cdot)$, $\sigma_{ac}(\cdot)$, $\sigma_{sc}(\cdot)$, and $\sigma_p(\cdot)$ denote the spectrum, absolutely continuous spectrum, singularly continuous spectrum, and point spectrum (the set of eigenvalues) respectively.) Following the usual terminology we call ρ_n an open spectral gap whenever $\rho_n \neq \emptyset$.

The purpose of this paper is to give a short proof of the following theorem that summarizes results of Firsova, Rofe-Beketov, and Zeludev:

Theorem 1 [3, 4, 6, 13, 14, 17, 18]. Assume Hypothesis (I). Then

(i) H_g has finitely many eigenvalues in each open gap ρ_n, $n \geq 0$.

(ii) H_g has at most two eigenvalues in every open gap ρ_n for n large enough.

(iii) If $\int_{\mathbb{R}} dx W(x) \neq 0$, H_g, $g > 0$ has precisely one eigenvalue in every open spectral gap ρ_n for n sufficiently large.

Remark 2. Parts (i) and (ii) are due to Rofe-Beketov [13]. Part (iii), under the additional conditions $\text{sgn}(W) = \text{constant}$, $W \in L^1(\mathbb{R}; (1 + x^2) dx)$, V piecewise continuous and W bounded is due to Zeludev [17]. In [18] the condition $\text{sgn}(W) = \text{constant}$ has been replaced by $\int_{\mathbb{R}} dx W(x) \neq 0$ but it has been left open as to whether there are one or two eigenvalues in sufficiently distant spectral gaps ρ_n. The present version of (iii) was first proved by Firsova [3, 4] (see also [6]) and Rofe-Beketov [14] on the basis of ODE methods. The case of a perturbed Hill operator on the halfline $(0, \infty)$ has also been studied in [8].

Before we give a short proof of Theorem 1 based on operator theoretic methods we need to prepare various well-known results on Hill operators and establish some further notation.

The Green’s function $G_0(z, x, x')$ (the integral kernel of the resolvent $(H_0 - z)^{-1}$) reads

$$G_0(z, x, x') = W(\psi_+(z, \cdot, x_0), \psi_-(z, \cdot, x_0))^{-1} \times \begin{cases} \psi_-(z, x, x_0)\psi_+(z, x', x_0), & x \leq x', \\ \psi_+(z, x, x_0)\psi_-(z, x', x_0), & x \geq x', \end{cases}$$

$$x_0 \in [0, a], \quad z \in \mathbb{R}. $$

Here $W(f, g)$ denotes the Wronskian of f and g,

$$W(f, g)(x) := f(x)g'(x) - f'(x)g(x),$$

and ψ_\pm are the Floquet solutions of H_0 defined by

$$\psi_\pm(z, x, x_0) := c(z, x, x_0) + \phi_\pm(z, x_0)s(z, x, x_0), \quad z \in \mathbb{R}, \quad x \in \mathbb{R},$$

$$\psi_\pm(z, x_0, x_0) = 1, \quad z \in \mathbb{R},$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
A SHORT PROOF OF ZHELUDEV'S THEOREM

\[
\phi_{\pm}(z, x_0) := \{\Delta(z) \pm [\Delta(z)^2 - 1]^{1/2} \}
\]

\[-c(z, x_0 + a, x_0)s(z, x_0 + a, x_0)^{-1}, \quad z \in \mathcal{R}, \]

where \(\Delta \) denotes the discriminant (Floquet determinant) of \(H_0 \),

\[
\Delta(z) := [c(z, x_0 + a, x_0) + s'(z, x_0 + a, x_0)]/2, \quad z \in \mathbb{C},
\]

and \(s, c \) is a fundamental system of distributional solutions of \(H_0f = zf \), \(z \in \mathbb{C} \), with

\[
s(z, x_0, x_0) = 0, \quad s'(z, x_0, x_0) = 1,
\]

\[
c(z, x_0, x_0) = 1, \quad c'(z, x_0, x_0) = 0, \quad z \in \mathbb{C}.
\]

Moreover, \(\psi_{\pm} \) are meromorphic functions on the two-sheeted Riemann surface \(\mathcal{R} \) of \([\Delta(z)^2 - 1]^{1/2} \) obtained by joining the upper and lower rims of two copies of the cut plane \(\mathbb{C}\setminus\sigma(H_0) \) (or \(\mathbb{C}\setminus\{\rho(H) \cap \mathbb{R}\} \), \(\rho(\cdot) \) the resolvent set) in the usual (crosswise) way. \(\mathcal{R} \) is assumed to be compactified if only finitely many spectral gaps of \(H_0 \) are open, otherwise \(\mathcal{R} \) is noncompact. Since we do not need this Riemann surface explicitly in the following considerations we assume that a suitable choice of cuts has been made and omit further details.

We note that \(s, c \), and \(\Delta \) are entire with respect to \(z \in \mathbb{C} \), and \(\Delta \) and \(G_0 \) are independent of the chosen reference point \(x_0 \in [0, a] \). Especially, by considering a particular open gap \(\rho_n = (E_{2n-1}, E_{2n}) \), \(n \geq 1 \), one can always choose \(x_0 \) in such a way that the zeros of \(s(z, x_0+a, x_0) \) (there is precisely one simple zero in each \(\rho_n \), \(n \geq 1 \), they constitute the Dirichlet eigenvalues of \(H_0 \) restricted to \((x_0, x_0+a) \) are not at \(\partial \rho_n = \{E_{2n-1}, E_{2n}\} \). (This fact is relevant in (11) and will be needed later on in (20).) From now on, when considering a particular gap \(\rho_n \), we always assume that \(\rho_n \) is open, i.e., \(\rho_n \neq \emptyset \). For simplicity we shall also assume that \(E_0 \geq 1 \) and for notational convenience we introduce \(E_{-1} = 1 \) (in order not to distinguish \(n = 0 \) and \(n \geq 1 \) in the following).

We also note that

\[
W(\psi_+(z, \cdot, x_0), \psi_-(z, \cdot, x_0)) = -2[\Delta(z)^2 - 1]^{1/2}s(z, x_0 + a, x_0)^{-1}, \quad z \in \mathcal{R},
\]

and

\[
-2[\Delta(z)^2 - 1]^{1/2}G_0(z, x, x) = s(z, x + a, x), \quad z \in \mathbb{C}, \quad x \in \mathbb{R}.
\]

Moreover, restricting \(z \) to the upper sheet \(\mathcal{R}_+ \) of \(\mathcal{R} \) from now on, the Floquet solutions \(\psi_{\pm} \) have the particular structure

\[
\psi_{\pm}(z, x, x_0) = e^{\mp a(z)(x-x_0)p_{\pm}(a(z), x, x_0)},
\]

\[
p_{\pm}(a(z), x + a, x_0) = p_{\pm}(a(z), x, x_0), \quad z \in \mathcal{R}_+, \quad x \in \mathbb{R},
\]

where \(a(z) \) is given by

\[
a(z) := a^{-1}\ln\{\Delta(z) + [\Delta(z)^2 - 1]^{1/2}\}, \quad z \in \mathcal{R}_+,
\]

\[
cosh[a(z)a] = \Delta(z), \quad \sinh[a(z)a] = [\Delta(z)^2 - 1]^{1/2},
\]

and the branch of \([\Delta(z)^2 - 1]^{1/2} \) on \(\mathcal{R}_+ \) is chosen such that

\[
\psi_{\pm}(z, \cdot, x_0) \in L^2(0, \pm\infty), \quad z \in \mathcal{R}_+ \setminus \sigma(H_0).
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\(\alpha \) (resp. \(\alpha - \pi i \)) is positive on open gaps \(\rho_{2n} \) (resp. \(\rho_{2n+1} \)), \(n \in \mathbb{N}_0 \), and monotonic near \(E_0, E_{4n-1}, E_{4n} \) (resp. \(E_{4n-3}, E_{4n-2} \)), \(n \in \mathbb{N} \).

We also note the asymptotic relations

\[
(19) \quad s(\lambda, x_0 + a, x_0) = \lambda^{-1/2} \sin[\lambda^{1/2}a] + O(\lambda^{-1}),
\]

and [18]

\[
(20) \quad p_{\pm}(\alpha(E_{r(n)}), x, x_0)^2 = -\frac{1}{2} \left[1 + \frac{a^2}{4n^2\pi^2} \frac{c'(E_{r(n)}), x_0 + a, x_0}{s(E_{r(n)}), x_0 + a, x_0} \right] \cdot \left\{ 1 - \cos((4\pi n/a)(x - x_0) + 2\delta_r(n)) + O(n^{-1}) \right\},
\]

\[
(21) \quad \delta_r(n) := \arctan \left(\frac{2n\pi/a}{s(E_{r(n)}), x_0 + a, x_0} \right) \left| c'(E_{r(n)}), x_0 + a, x_0 \right|^{1/2},
\]

\[r(n) = 4n - 1, 4n, \]

and similarly for the odd open gaps \(\rho_{2n+1} \), \(n \in \mathbb{N}_0 \). (In order to avoid that \(s(E_{r(n)}), x_0 + a, x_0) = 0 \) in (20), we tacitly made use of the fact that we may choose \(x_0 = x_0(n) \) appropriately without affect \(\Delta \) and the Green's function \(G_0 \) in (8). Such a choice will always be assumed in the following.)

Given these preliminaries we can split the Green's function \(G_0 \) into two parts as follows. For simplicity we only consider even open gaps \(\rho_{2n} \), \(n \in \mathbb{N}_0 \), in details. The analysis for odd gaps \(\rho_{2n+1} \), \(n \in \mathbb{N}_0 \), is completely analogous.

\[
G_0(\lambda, x, x') = -[s(\lambda, x_0 + a, x_0)/2 \sinh(\alpha(\lambda))]p(\alpha(E_{4n}), x, x_0)
\]

\[
\cdot p(\alpha(E_{4n}), x', x_0) + R_0(\lambda, x, x'),
\]

\[
(22) \quad p(\alpha(E_{4n}), x, x_0) := p_+(E_{4n}), x, x_0)
\]

\[
= p_-(\alpha(E_{4n}), x, x_0), \quad x \in \mathbb{R},
\]

for \(\lambda \in [E_{4n} - \varepsilon_n, E_{4n}] \) (\(\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \)) with \(\varepsilon_n > 0 \) sufficiently small, \(n \in \mathbb{N}_0 \). One has the bound [13, 17]

\[
|R_0(\lambda, x, x')| \leq C|E_{4n-1}|^{-1/2}(1 + |x| + |x'|),
\]

\[\lambda \in \rho_{2n}, \quad \alpha(\lambda) \in [0, \varepsilon_n], \quad x, x' \in \mathbb{R}, \]

with \(C \) independent of \(n \in \mathbb{N}_0 \). Since Zheludev [17, 18] relies on the estimate (23), he is forced to assume \(W \in L^1(\mathbb{R}; (1 + x^2)^{-1}d\chi) \) in order to make the integral kernel \(|W(x)|^{1/2}R_0(\lambda, x, x')|W(x')|^{1/2} \) to be the integral kernel of a bounded (in fact Hilbert-Schmidt) operator in \(L^2(\mathbb{R}) \). In order to avoid this limitation we shall employ instead a device from [1] and use a different splitting of \(G_0 \):

\[
G_0(\lambda, z, x, x') = G_0(z, x_0, x_0)^{-1}G_0(z, x, x_0)G_0(z, x_0, x')
\]

\[
= G_0, x_0(z, x, x') + G_0, x_0(z, x, x'),
\]

\[
\gamma(z) := -\{s(z, x_0 + a, x_0)/2 \sinh(\alpha(z)a)\},
\]

\[r(n) = 4n - 1, 4n, \]
where \(G_{0,x_0}(z, x, x') \) denotes the integral kernel of the resolvent of the Dirichlet operator \(H_{0,x_0}^D \) obtained from \(H_0 \) by imposing an additional Dirichlet boundary condition at \(x_0 \). Explicitly we have

\[
P_{x_0}(\lambda, x, x') = \left\{ \begin{array}{ll}
\psi_- (\lambda, x, x_0), & x \leq x_0 \\
\psi_+ (\lambda, x, x_0), & x \geq x_0 \\
\psi_- (\lambda, x', x_0), & x' \leq x_0 \\
\psi_+ (\lambda, x', x_0), & x' \geq x_0 \\
\end{array} \right., \quad \lambda \in \rho_{2n}, \ n \in \mathbb{N}_0,
\]

and, similar to (3.7) in [1],

\[
|G_{0,x_0}(\lambda, x, x')| \leq C |E_{2n-1}|^{-1/2} |x| \leq C |E_{2n-1}|^{-1/2} |x|^1/2 |x'|^{1/2}, \quad \lambda \in \rho_{2n}, \ n \in \mathbb{N}_0, \ \alpha(\lambda) \geq 0 \text{ small enough,}
\]

where \(C \) is independent of \(n \) and

\[
|x_0| := \begin{cases}
0, & x \leq x_0 \leq x' \text{ or } x' \leq x_0 \leq x, \\
\min(|x - x_0|, |x' - x_0|), & \text{otherwise.}
\end{cases}
\]

In order to derive (26) one separately considers the four regions \(x \leq x' \leq x_0 \), \(x' \leq x \leq x_0 \), \(x_0 \leq x' \leq x \), \(x_0 \leq x \leq x' \) (the cases \(x \leq x_0 \leq x' \), \(x' \leq x_0 \leq x \) being trivial) and uses the mean value theorem to bound

\[
|p_+ (\alpha(\lambda), y, x_0) - p_- (\alpha(\lambda), y, x_0)| \leq D \alpha(\lambda) |y - x_0|, \quad \lambda \in \rho_{2n}, \ \alpha(\lambda) \geq 0 \text{ small enough,}
\]

with \(D \) independent of \(n \in \mathbb{N}_0 \).

Finally, we introduce Birman-Schwinger type operators and related quantities. We distinguish three cases and again study even (open) gaps \(\rho_{2n}, \ n \in \mathbb{N}_0 \) for simplicity.

(a) \(W \leq 0 \). We factorize

\[
w := |W|^{1/2}, \quad W = -w^2,
\]

and define the Birman-Schwinger kernel by

\[
k(\lambda) := -g w (H_0 - \lambda)^{-1} w, \quad \lambda \in \rho_{2n}, \ n \in \mathbb{N}_0, \ g > 0.
\]

Then the selfadjoint Birman-Schwinger kernel satisfies \(k(\lambda) \in \mathcal{B}_2 (L^2(\mathbb{R})) \) (\(\mathcal{B}_2 (\cdot) \) the set of Hilbert-Schmidt operators) and due to (24)-(26)

\[
k(\lambda) = -\gamma(\lambda) g P(\lambda) - g M(\lambda), \quad \lambda \in \rho_{2n},
\]

\[
\gamma(\lambda) = \frac{C_{4n}}{(4n-1)} |\alpha(\lambda)|^{-1}, \quad C_{4n-1} < C_{4n}, \ n \in \mathbb{N}_0,
\]

where \(P(\lambda), \lambda \in \rho_{2n}, \) is a positive rank one projection, \(M(\lambda) \in \mathcal{B}_2 (L^2(\mathbb{R})) \), \(\lambda \in \rho_{2n}, \) is selfadjoint, and

\[
\|M(\lambda)\| \leq C E_{4n-1}^{-1/2}, \quad \lambda \in \rho_{2n}, \ n \in \mathbb{N}_0,
\]

with \(C \) independent of \(n \). (One can show that \(\alpha(\lambda) = d_{4n} |\lambda - E_{4n}|^{1/2} \)

for some constants \(d_{4n} > 0 \).)

(b) \(W \geq 0 \). Introducing the factorization

\[
w := |W|^{1/2}, \quad W = w^2,
\]
one defines

\[(34) \quad \hat{k}(\lambda) := gw(H_0 - \lambda)^{-1}w, \quad \lambda \in \rho_{2n}, \ n \in \mathbb{N}_0, \ g > 0. \]

Then \(\hat{k}(\lambda) \in \mathcal{B}_2(L^2(\mathbb{R})) \) and (31) and (32) (with \(\gamma \to -\gamma \)) hold again.

(c) \(W = W_+ - W_- \), \(W_+ > 0 \) on sets of positive Lebesgue measure. If necessary, we modify \(W_\pm \) such that

\[W = W_+ - W_- = \tilde{W}_+ - \tilde{W}_-, \]

\[\tilde{W}_{\pm} \geq (1 + x^2)^{-1-\varepsilon}, \quad \varepsilon > 0, \quad \tilde{W}_{\pm} \in L^1(\mathbb{R}, (1 + |x|)dx), \]

\[\tilde{w}_\pm := \tilde{W}_\pm^{1/2}. \]

Following a device of Simon [16] we define the selfadjoint Birman-Schwinger kernel by

\[(35) \quad K(X) := gw^+(H_0 - gW_+ - Xy \rho_+ e^2), \quad X \in \rho_{2n} \setminus \sigma_p(H_0 - g\tilde{W}_-), \ n \in \mathbb{N}_0, \ g > 0. \]

The fact that \(\tilde{K}(\lambda) \) is selfadjoint (as opposed to the usual choice

\[|W|^{1/2} \text{sgn}(W')(H_0 - \lambda)^{-1}|W'|^{1/2}, \]

even though \(W \) changes sign, will be of crucial importance below. (This trick has also been employed successfully in [7].)

Given all these preliminaries we now turn to the Proof of Theorem 1. It suffices to treat the even open gaps \(\rho_{2n}, \ n \in \mathbb{N}_0 \).

(A) \(W \leq 0 \). Since

\[(37) \quad \frac{d}{d\lambda} k(\lambda) = -gw(H_0 - \lambda)^{-2}w \leq 0, \quad \lambda \in \rho_{2n}, \ n \in \mathbb{N}_0, \]

all eigenvalues of \(k(\lambda) \) are monotonically decreasing with respect to \(\lambda \in \rho_{2n} \). Moreover, by the Birman-Schwinger principle [12], \(H_g = H_0 - g|W| \) has an eigenvalue \(E^* \in \rho_n \) iff \(k(E^*) \) has an eigenvalue \(-1\) of the same multiplicity. Since \(E^* \) is necessarily simple, no eigenvalues of \(k(\lambda) \) can cross in \(\rho_n \). Because of (31), \(k(\lambda) \) has precisely one eigenvalue decreasing from \(+\infty \) at \(E_{4n-1} \) to \(O(E_{4n-1}^{1/2}) \) near \(E_{4n} \) and one eigenvalue branch decreasing from \(O(E_{4n-1}^{1/2}) \) near \(E_{4n-1} \) to \(-\infty \) at \(E_{4n} \) (assuming \(n \) large enough such that \(E_{4n-1} >> 1 \)).

The remaining eigenvalues of \(k(\lambda) \) in \(\rho_{2n} \) are of order \(O(E_{4n-1}^{-1/2}) \) for \(n \) large enough. Thus choosing \(n \) sufficiently large, precisely one eigenvalue of \(K(\lambda) \) (the one diverging to \(-\infty \)) will cross \(-1\). Since \(k(\lambda) \) is compact, only finitely many eigenvalues of \(k(\lambda) \) cross \(-1 \) in each gap \(\rho_n \). This proves (i) and (iii) for \(W \leq 0 \).

Since \(W \geq 0 \) can be dealt with analogously, the only difference being that now \(\frac{d}{d\lambda} \hat{k}(\lambda) \geq 0 \) on \(\rho_n \) and hence the eigenvalues of \(\hat{k}(\lambda) \) are monotonically increasing (accounting for no eigenvalue crossing of the line \(-1\) on \(\rho_0 \) since \(\hat{k}(\lambda) \geq 0 \) on \(\rho_0 \)), we immediately turn to the general case.

(B) \(\text{sgn}(W) \neq \text{constant} \).
Throughout the rest of the proof we assume that $\lambda \in \rho_{2n}$ with n large enough unless otherwise stated. We start with the elementary identity

$$K_-(\lambda) := g w_-(H_0 - \tilde{W}_- - \lambda)^{-1} w_-
(38) = -1 + [1 - g w_-(H_0 - \lambda)^{-1} w_-]^{-1}
$$

$$= -1 + [1 + \tilde{k}_-(\lambda)]^{-1}, \quad \lambda \in \rho_{2n} \setminus \{E^*_2\},$$

where E^*_2 denotes the unique eigenvalue of $H_0 - g \tilde{W}_-$ in ρ_{2n} determined in Part A. We note that

$$\tilde{k}_-(\lambda) = -\hat{\gamma}(\lambda) g \tilde{P}_-(\lambda) - g \tilde{M}_-(\lambda), \quad \lambda \in \rho_{2n},
(39)$$

where the selfadjoint rank-one operator $\tilde{P}_-(\lambda), \lambda \in \rho_{2n}$, has the integral kernel

$$\hat{\gamma}(\lambda) := \gamma(\lambda) \int_R dy \tilde{W}_-(y) P_{x_0}(\lambda, y, y)\]

$$w_-(x) P_{x_0}(\lambda, x, x') w_-(x'), \quad \lambda \in \rho_{2n},
(40)$$

$$and \tilde{M}_-(\lambda) \in \mathcal{B}_2(L^2(\mathbb{R})), \lambda \in \rho_{2n}, is selfadjoint with integral kernel

$$\tilde{w}_-(x) G_{0,x_0}(\lambda, x, x') \tilde{w}_-(x'), \quad \lambda \in \rho_{2n}.
(42)$$

Next we introduce the orthogonal projection

$$\tilde{Q}_-(\lambda) := 1 - \tilde{P}_-(\lambda), \quad \lambda \in \rho_{2n},
(43)$$

and insert (39) into (38). Assuming $\varepsilon_n > 0$ sufficiently small, a straightforward computation (inverting 1+rank one + perturbation) then yields for the behavior of $\tilde{K}_-(\lambda)$ near the band edges E_{4n-1}, E_{4n},

$$\tilde{K}_-(\lambda) = -1 - \tilde{P}_-(\lambda) + [1 - g \tilde{Q}_-(\lambda) \tilde{M}_-(\lambda) \tilde{Q}_-(\lambda)]^{-1} + O(\gamma(\lambda)^{-1})
(44)$$

$$= -\tilde{P}_-(\lambda) + \tilde{Q}_-(\lambda) [1 - g \tilde{Q}_-(\lambda) \tilde{M}_-(\lambda) \tilde{Q}_-(\lambda)]^{-1} - 1] \tilde{Q}_-(\lambda) + O(\gamma(\lambda)^{-1})
= \left(-1 \begin{array}{c} O \\[1 - g \tilde{Q}_-(\lambda) \tilde{M}_-(\lambda) \tilde{Q}_-(\lambda)]^{-1} - 1 \end{array} \right) + O(\gamma(\lambda)^{-1}),$$

$$\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}],$$

with respect to the decomposition $L^2(\mathbb{R}) = \tilde{P}_-(\lambda) L^2(\mathbb{R}) \oplus \tilde{Q}_-(\lambda) L^2(\mathbb{R})$. (Here the symbol $O(\gamma(\lambda)^{-1})$ denotes a compact operator with norm bounded by $C|\gamma(\lambda)|^{-1}$.) In particular,

$$\|\tilde{K}_-(\lambda)\| = O(1), \quad \lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}]
(45)$$

for $\varepsilon_n > 0$ sufficiently small. Noticing that

$$\tilde{K}(\lambda) = (\tilde{w}_+/\tilde{w}_-)^{-1} \tilde{K}_-(\lambda) (\tilde{w}_+/\tilde{w}_-), \quad \lambda \in \rho_{2n} \setminus \{E^*\},
(46)$$

we infer for the behavior of $\tilde{K}(\lambda)$ near the band edges E_{4n-1}, E_{4n} that

$$\tilde{K}(\lambda) = -\tilde{P}(\lambda) + (\tilde{w}_+/\tilde{w}_-) \tilde{Q}_-(\lambda) [1 - g \tilde{Q}_-(\lambda) \tilde{M}_-(\lambda) \tilde{Q}_-(\lambda)]^{-1} - 1]
\tilde{Q}_-(\lambda) (\tilde{w}_+/\tilde{w}_-) + O(\gamma(\lambda)^{-1})
(47)$$

$$\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}].$$
Here $\tilde{P}(\lambda)$ has the integral kernel

$$\left[\int \mathbb{R} dy \tilde{W}(y) P_{x_0}(\lambda, y, y) \right]^{-1} \tilde{w}_+(x) P_{x_0}(\lambda, x, x') \tilde{w}_+(x'), \quad \lambda \in \rho_{2n},$$

and by using a geometric series expansion one checks that $\tilde{L}(\lambda)$ indeed extends to a $B_2(\mathbb{L}^2(\mathbb{R}))$-operator for $\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}]$ with $\varepsilon_n > 0$ sufficiently small. Moreover,

$$\|\tilde{L}(\lambda)\| \sim O(E^{-1/2}_{n}), \quad \lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}].$$

It remains to study $\tilde{K}(\lambda)$ near E_{2n}. By (38) we have

$$\tilde{K}_-(\lambda) = -\tilde{k}_-(\lambda)[1 + \tilde{k}_-(\lambda)]^{-1}$$

where we used the spectral representation for $\tilde{k}_-(\lambda)$,

$$\tilde{k}_-(\lambda) = \mu_1(\lambda) g P_1(\lambda) + g R_1(\lambda),$$

with $\mu_1(\lambda) g$ the unique eigenvalue branch of $\tilde{k}_-(\lambda)$ diverging to $-\infty$ as $\lambda \uparrow E_{4n}, P_1(\lambda)$ the associated rank one projection onto the corresponding eigenspace, and

$$\|R_1(\lambda)\| \leq C|E_{4n-1}|^{-1/2}, \quad \lambda \in \rho_{2n},$$

by (32). By (46), (50) yields an analogous formula for $\tilde{K}(\lambda), \lambda \in \rho_{2n}\{E_{2n}^*\}$.

Given these results one can now finish the proof (similar to Part A). Since

$$\frac{d}{d\lambda} \tilde{K}(\lambda) = g \tilde{w}_+(H_0 - g \tilde{W}_- - \lambda)^{-2} \tilde{w}_+ \geq 0, \quad \lambda \in \rho_n,$$

all eigenvalues of $\tilde{K}(\lambda)$ are monotonically increasing with respect to $\lambda \in \rho_n$. By the Birman-Schwinger principle, $H_g = H_0 + g W$ has an eigenvalue $E^* \in \rho_n$ iff $\tilde{K}(E^*)$ has an eigenvalue -1 with multiplicities preserved. Since H_g has only simple eigenvalues, again no eigenvalue crossing of $\tilde{K}(\lambda)$ occurs in ρ_n.

Due to (47), (49), (50), and its analog for $\tilde{K}(\lambda), \tilde{K}(\lambda)$ has precisely one eigenvalue branch $\nu_1(\lambda)$ in (E_{2n}^*, E_{4n}) that is monotonically increasing from $-\infty$ at E_{2n}^* to $O(1)$ near E_{4n}, all other eigenvalues of $\tilde{K}(\lambda)$ in (E_{2n}^*, E_{4n}) being $O(E_{4n-1}^{-1/2})$. Similarly, there is precisely one monotonically increasing eigenvalue branch $\nu_2(\lambda)$ of $\tilde{K}(\lambda)$ in (E_{4n-1}, E_{2n}^*) that is $O(E_{4n-1}^{-1/2})$ near E_{4n-1} and $+\infty$ at E_{2n}^*, and precisely one eigenvalue branch $\nu_3(\lambda)$ that is $O(1)$ near E_{4n-1} and $O(E_{4n-1}^{-1/2})$ near E_{2n}^*, all other eigenvalues of $\tilde{K}(\lambda)$ being $O(E_{4n-1}^{-1/2})$ throughout (E_{4n-1}, E_{2n}^*). The $O(1)$ branches near E_{4n} are of course due to $\tilde{P}(\lambda)$ in (47) (see also (48)). Given n sufficiently large we thus have the following distinctions:

(a) If $\int \mathbb{R} dx W(x) > O$, then (20), (25), and (48) imply that only $\nu_3(\lambda)$ crosses -1.

(b) If \(\int_{\mathbb{R}} dx W(x) < 0 \), then (20), (25), and (48) imply that only \(\nu_1(\lambda) \) crosses \(-1\).

(c) If \(\int_{\mathbb{R}} dx W(x) = 0 \), then \(\nu_1(\lambda), \nu_3(\lambda) \) may or may not cross \(-1\) and we have either 0, 1, or 2 eigenvalues in \(\rho_{2n} \).

Since \(\tilde{K}(\lambda) \) is compact, only finitely many eigenvalues can cross \(-1\) in each gap \(\rho_n \). This completes the proof of Theorem 1. \(\Box \)

Since one can replace the phrase "for \(n \) large enough" by "\(g > 0 \) sufficiently small" in every step of the above proof, Theorem 1 can also be viewed as a "weak-coupling" result in the following sense:

Theorem 3. Assume Hypothesis (I). Then

(i) \(H_g \) has at most two eigenvalues in every open gap \(\rho_n, n \in \mathbb{N}_0 \) for \(g > 0 \) sufficiently small.

(ii) Abbreviate

\[
I(E_{2n}) := \int_{(2n-1)}^{(2n)} dx W(x) p(\alpha(E_{2n}), x, x_0)^2, \quad n \in \mathbb{N}_0,
\]

and assume that \(g > 0 \) is small enough. Then \(H_g \) has no eigenvalues in \(\rho_n = (E_{2n-1}, E_{2n}) \), \(n \in \mathbb{N} \) if \(I(E_{2n-1}) < 0 \) and \(I(E_{2n}) > 0 \), \(H_g \) has precisely one eigenvalue in \(\rho_n \) if \(I(E_{2n-1}) < 0 \) and \(I(E_{2n}) < 0 \) or \(I(E_{2n-1}) > 0 \) and \(I(E_{2n}) > 0 \), and \(H_g \) has two eigenvalues in \(\rho_n \) if \(I(E_{2n-1}) > 0 \) and \(I(E_{2n}) < 0 \). Moreover, \(H_g \) has no eigenvalues in \(\rho_0 = (-\infty, E_0) \) if \(I(E_0) > 0 \) and precisely one eigenvalue in \(\rho_0 \) if \(I(E_0) \leq 0 \).

Proof. By the paragraph preceding Theorem 3 we only need to demonstrate the last assertion in the case \(I(E_0) = 0 \). For that purpose we first prove that \(R_0(E_0, x, x') \) (see (22) and (24)) is conditionally positive definite, i.e.,

\[
\int_{\mathbb{R}_2} dx dx' W(x) p(\alpha(E_0), x, x_0) R_0(E_0, x, x') W(x') p(\alpha(E_0), x', x_0) > 0
\]

if \(I(E_0) = \int_{\mathbb{R}} dx W(x) p(\alpha(E_0), x, x_0)^2 = 0 \).

(We also note that \(R_0(E_0, x, x') = G^D_0, x_0 (E_0, x, x') \). In order to prove (55) we invoke the eigenfunction expansion associated with \(H_0 \). Let

\[
f(\cdot) = s - \lim_{R \to \infty} (2\pi)^{-1/2} \int_{|\beta| \leq R} d\beta \hat{f}_\pm(\beta) \Psi_\pm(\beta, \cdot),
\]

\[
\hat{f}_\pm(\cdot) = s - \lim_{R \to \infty} (2\pi)^{-1/2} \int_{|y| \leq R} dy f(y) \Psi_\pm(\cdot, y), \quad f \in L^2(\mathbb{R}),
\]

where

\[
\Psi_\pm(\beta, x) := a^{1/2} \left[\int_{x_0}^{x_0+a} dy \psi_-(z(\beta), y, x_0) \psi_+(z(\beta), y, x_0) \right]^{-1/2}
\]

\[
\cdot \psi_\pm(z(\beta) x, x_0),
\]

(58) \(\Psi_\pm(\beta, x) = \Psi_+(\beta, x) = \overline{\Psi_\pm(\beta, x)} \), \(\beta \in \mathbb{R} \),

and

(59) \(\cosh[\beta(z)a] = \Delta(z), \quad \sinh[\beta(z)a] = [\Delta(z)^2 - 1]^{1/2} \)
with $\beta(z)$ an appropriate analytic continuation of $\text{arc sinh}\{[\Delta(z)^2 - 1]^{1/2}\}$ to the Riemann surface \mathcal{R} (see, e.g., [5] for more details). If $f \in L^1(\mathbb{R})$ then the integral for \hat{f}_\pm in (56) becomes an ordinary Lebesgue integral over \mathbb{R} since $\Psi_\pm(\beta, x)$ is uniformly bounded in $x \in \mathbb{R}$. (If $V = 0$ then $\Psi_\pm(\beta, x) = e^{\pm i \beta x}$.)

We also note that

$$z(\beta) = E_0 + (2\mathbb{R}_0)^{-1} \beta^2 + O(\beta^4)$$

for some $\mathbb{R}_0 > 0$. Next we define

$$\omega(\cdot) := W(\cdot) p(\alpha(E_0), \cdot, x_0)$$

and compute for $\lambda < E_0$,

$$\int_{\mathbb{R}^2} dx \, dx' \omega(x) R_0(\lambda, x, x') \omega(x') = \int_{\mathbb{R}^2} dx \, dx' \omega(x) G_0(\lambda, x, x') \omega(x')$$

$$= \int_{\mathbb{R}} d\beta |\omega_+(\beta)|^2 |z(\beta) - \lambda|^{-1},$$

where we used (22) together with $I(E_0) = 0$ in the first equality and

$$((H_0 - \lambda)^{-1} \Psi_\pm(\beta(z), x) = [z(\beta) - \lambda]^{-1} \Psi_\pm(\beta(z), x),$$

$$z(\beta) \geq E_0, \beta \in \mathbb{R},$$

$$\omega(\cdot) := W(\cdot) p(\alpha(E_0), \cdot, x_0)$$

and hence

$$\int_{\mathbb{R}^2} dx \, dx' \omega(x) R_0(E_0, x, x') \omega(x')$$

$$= \int_{\mathbb{R}} d\beta |\omega_+(\beta)|^2 |z(\beta) - E_0| > 0$$

by (23) and the monotone convergence theorem. This proves (55). It remains to go through the proof of Theorem 1 step-by-step. In fact, let E^*_0 be the unique eigenvalue of $H_0 - g \overline{W}_-$ in $\rho_0 = (-\infty, E^*_0)$ determined by Part A of the proof of Theorem 1. Since (53) remains valid for $n = 0$, and

$$(H_0 - g \overline{W}_- - \lambda)^{-1} \geq 0$$

for $\lambda \in (-\infty, E^*_0)$, we have

$$\tilde{K}(\lambda) \geq 0$$

for $\lambda \in (-\infty, E^*_0)$. Thus no eigenvalue branch of $\tilde{K}(\lambda)$ can cross -1 for $\lambda < E^*_0$. In the interval (E^*_0, E_0) there is precisely one eigenvalue branch $\nu_1(\lambda)$ that is monotonically increasing from $-\infty$ at E^*_0 to $O(1)$ near E_0, all other eigenvalues of $\tilde{K}(\lambda)$ being $O(g)$ throughout $[E^*_0, E_0]$. In order to prove that $\nu_1(\lambda)$ actually crosses
A SHORT PROOF OF ZHELUDEV'S THEOREM

-1 for \(g > 0 \) small enough we next consider \(\tilde{K}(E_0) = n - \lim_{\lambda \uparrow E_0} \tilde{K}(\lambda) \). In analogy to (44) one proves

\[
\tilde{K}_-(E_0) = -\tilde{P}_-(E_0) + g\tilde{Q}_-(E_0)\tilde{M}_-(E_0)\tilde{Q}_-(E_0) + O(g^2),
\]

where \(O(g^2) \) denotes a compact operator with norm bounded by \(Cg^2 \). This yields

\[
\tilde{K}(E_0) = -\tilde{P}(E_0) + g(\tilde{w}_+/\tilde{w}_-)\tilde{Q}_-(E_0)\tilde{M}_-(E_0)\tilde{Q}_-(E_0)(\tilde{w}_+ / \tilde{w}_-) + O(g^2),
\]

where \(\tilde{P}(E_0) \) is an orthogonal projection with integral kernel (see (22), (25) and (48))

\[
\left[\int dy \tilde{W}_+(y) p(\alpha(E_0), y, x_0)^2 \right]^{-1} \tilde{w}_+(x)p(\alpha(E_0), x, x_0)p(\alpha(E_0), x', x_0)\tilde{w}_+(x')
\]

since \(I(E_0) = 0 \), and \(\tilde{M}_-, \tilde{Q}_- \) have been introduced in (42), (43). A simple computation then yields

\[
(\tilde{w}_+ p(\alpha(E_0), \cdot, x_0), \tilde{K}(E_0)\tilde{w}_+ p(\alpha(E_0), \cdot, x_0))/||\tilde{w}_+ p(\alpha(E_0), \cdot x_0)||^2
\]

\[
= -1 + g \int \int_{\mathbb{R}^2} dx dx' \omega(x) R_0(E_0, x, x') \omega(x') + O(g^2).
\]

By (55) this indeed proves that \(\nu_1(\lambda) \) crosses \(-1\) for \(g > 0 \) sufficiently small. \(\square \)

Remark 4. To the best of our knowledge the fact that \(R_\infty(E_0, x, x') \) is conditionally positive definite (in the sense of (55)) and that for \(g > 0 \) small enough \(H_g \) has precisely one eigenvalue in \(\rho_0 = (-\infty, E_0) \) if \(I(E_0) = 0 \) appears to be new. It generalizes a corresponding result of [15] (extended in [9]) in the special case where \(V \equiv 0 \).

Evidently, our strategy of using a selfadjoint Birman-Schwinger kernel, even if \(\text{sgn}(W) \neq \text{constant} \), extends to perturbed one-dimensional periodic Dirac operators and weakly perturbed second-order finite difference operators.

Finally, we remark that Theorem 1, in particular, implies that \(N \)-soliton solutions of the Korteweg-de Vries equation relative to a periodic background solution (i.e., relative reflectionless solutions) will in general not decay as \(x \to +\infty \) and \(x \to -\infty \) since by definition they are associated with the insertion of \(N \) eigenvalues in the spectral gaps of the periodic background Hamiltonian.

ACKNOWLEDGMENT

F. Gesztesy would like to acknowledge an illuminating discussion with M. Klaus.

REFERENCES

