A short proof of Zheludev's theorem

Authors:
F. Gesztesy and B. Simon

Journal:
Trans. Amer. Math. Soc. **335** (1993), 329-340

MSC:
Primary 34L40; Secondary 34L10, 47E05, 49R05, 81Q10

DOI:
https://doi.org/10.1090/S0002-9947-1993-1096260-8

MathSciNet review:
1096260

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a short proof of Zheludev's theorem that states the existence of precisely one eigenvalue in sufficiently distant spectral gaps of a Hill operator subject to certain short-range perturbations. As a by-product we simultaneously recover Rofe-Beketov's result about the finiteness of the number of eigenvalues in essential spectral gaps of the perturbed Hill operator. Our methods are operator theoretic in nature and extend to other one-dimensional systems such as perturbed periodic Dirac operators and weakly perturbed second order finite difference operators. We employ the trick of using a selfadjoint Birman-Schwinger operator (even in cases where the perturbation changes sign), a method that has already been successfully applied in different contexts and appears to have further potential in the study of point spectra in essential spectral gaps.

**[1]**R. Blankenbecler, M. L. Goldberger, and B. Simon,*The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians*, Ann. Phys.**108**(1977), 69-78. MR**0456018 (56:14250)****[2]**M. S. P. Eastham,*The spectral theory of periodic differential equations*, Scottish Academic Press, Edinburgh, 1973.**[3]**N. E. Firsova,*Trace formula for a perturbed one-dimensional Schrödinger operator with a periodic potential*. I, Problemy Mat. Fiz.**7**(1974), 162-177. (Russian) MR**0447695 (56:6005)****[4]**-,*Trace formula for a perturbed one-dimensional Schrödinger operator with a periodic potential*. II, Problemy Mat. Fiz.**8**(1976), 158-171. (Russian)**[5]**-,*Riemann surface of quasimomentum and scattering theory for the perturbed Hill operator*, J. Soviet Math.**11**(1979), 487-497.**[6]**-,*Levinson formula for perturbed Hill operator*, Theoret. and Math. Phys.**62**(1985), 130-140.**[7]**F. Gesztesy and B. Simon,*On a theorem of Deift and Hempel*, Comm. Math. Phys.**161**(1988), 503-505. MR**937772 (89g:35080)****[8]**D. B. Hinton, M. Klaus, and J. K. Shaw,*On the Titchmarsh-Weyl function for the half-line perturbed periodic Hill's equation*, Quart. J. Math. Oxford (2)**41**(1990), 189-224. MR**1053662 (91c:34035)****[9]**M. Klaus,*On the bound states of Schrödinger operators in one dimension*, Ann. Phys.**108**(1977), 288-300. MR**0503200 (58:20010)****[10]**B. M. Levitan,*Inverse Sturm-Liouville problems*, VNU Science Press, Utrecht, 1987. MR**933088 (89b:34001)****[11]**V. A. Marchenko,*Sturm-Liouville operators and applications*, Birkhäuser, Basel, 1986. MR**897106 (88f:34034)****[12]**M. Reed and B. Simon,*Methods of modern mathematical physics*. IV, Analysis of Operators, Academic Press, New York, 1978. MR**0493421 (58:12429c)****[13]**F. S. Rofe-Beketov,*Perturbation of a Hill operator having a first moment and nonzero integral creates one discrete level in distant spectral gaps*, Mat. Fizika i Funkts. Analiz. (Khar'kov)**19**(1973), 158-159. (Russian) MR**0477257 (57:16798)****[14]**-,*A test for the finiteness of the number of discrete levels introduced into gaps of a continuous spectrum by perturbations of a periodic potential*, Soviet Math. Dokl.**5**(1964), 689-692.**[15]**B. Simon,*The bound stales of weakly coupled Schrödinger operators in one and two dimensions*, Ann. Phys.**97**(1976), 279-288. MR**0404846 (53:8646)****[16]**-,*Brownian motion*,*properties of Schrödinger operators and the localization of binding*, J. Funct. Anal.**35**(1980), 215-229. MR**561987 (81c:35033)****[17]**V. A. Zheludev,*Eigenvalues of the perturbed Schrödinger operators with a periodic potential*, Topics in Mathematical Physics (M. Sh. Birman, ed.), Vol. 2, Consultants Bureau, New York, 1968, pp. 87-101.**[18]**-,*Perturbation of the spectrum of the one-dimensional self-adjoint Schrödinger operator with a periodic potential*, Topics in Mathematical Physics (M. Sh. Birman, ed.), Vol. 4, Consultants Bureau, New York, 1971, pp. 55-75.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34L40,
34L10,
47E05,
49R05,
81Q10

Retrieve articles in all journals with MSC: 34L40, 34L10, 47E05, 49R05, 81Q10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1096260-8

Article copyright:
© Copyright 1993
American Mathematical Society