Spectral symmetry of the Dirac operator in the presence of a group action

Authors:
H. D. Fegan and B. Steer

Journal:
Trans. Amer. Math. Soc. **335** (1993), 631-647

MSC:
Primary 58G25; Secondary 22E46

MathSciNet review:
1075381

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a compact Lie group of rank two or greater which acts on a spin manifold of dimension through isometries with finite isotropy subgroups at each point. Define the Dirac operator, , on relative to the split connection. Then we show that has spectral -symmetry. This is first established in a number of special cases which are both of interest in their own right and necessary to establish the more general case. Finally we consider changing the connection and show that for the Levi-Civita connection the equivariant eta function evaluated at zero is constant on .

**[1]**Michael Atiyah and Friedrich Hirzebruch,*Spin-manifolds and group actions*, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 18–28. MR**0278334****[2]**M. F. Atiyah, V. K. Patodi, and I. M. Singer,*Spectral asymmetry and Riemannian geometry. I*, Math. Proc. Cambridge Philos. Soc.**77**(1975), 43–69. MR**0397797****[3]**H. D. Fegan and B. Steer,*On the “strange formula” of Freudenthal and de Vries*, Math. Proc. Cambridge Philos. Soc.**105**(1989), no. 2, 249–252. MR**974980**, 10.1017/S0305004100067736**[4]**Mikhael Gromov and H. Blaine Lawson Jr.,*Spin and scalar curvature in the presence of a fundamental group. I*, Ann. of Math. (2)**111**(1980), no. 2, 209–230. MR**569070**, 10.2307/1971198**[5]**Nigel Hitchin,*Harmonic spinors*, Advances in Math.**14**(1974), 1–55. MR**0358873****[6]**K. Knapp,*Rank and Adams filtration of a Lie group*, Topology**17**(1978), no. 1, 41–52. MR**0470960****[7]**H. Blaine Lawson Jr. and Shing Tung Yau,*Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres*, Comment. Math. Helv.**49**(1974), 232–244. MR**0358841****[8]**Armand Borel,*Seminar on transformation groups*, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. MR**0116341****[9]**R. Parthasarathy,*Dirac operator and the discrete series*, Ann. of Math. (2)**96**(1972), 1–30. MR**0318398****[10]**José Seade and Brian Steer,*A note on the eta function for quotients of 𝑃𝑆𝐿₂(𝑅) by co-compact Fuchsian groups*, Topology**26**(1987), no. 1, 79–91. MR**880510**, 10.1016/0040-9383(87)90023-1**[11]**Stephen Slebarski,*Dirac operators on a compact Lie group*, Bull. London Math. Soc.**17**(1985), no. 6, 579–583. MR**813743**, 10.1112/blms/17.6.579

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58G25,
22E46

Retrieve articles in all journals with MSC: 58G25, 22E46

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1075381-X

Article copyright:
© Copyright 1993
American Mathematical Society