ON THE BRAUER GROUP OF TORIC VARIETIES

FRANK R. DEMEYER AND TIMOTHY J. FORD

Abstract. We compute the cohomological Brauer group of a normal toric variety whose singular locus has codimension less than or equal to 2 everywhere.

Associated to each algebraic variety X is the cohomological Brauer group $B'(X) = \text{tors}(H^2(X, \mathbb{G}_m))$ which is the torsion subgroup of the second étale cohomology group of X with coefficients in the sheaf of units. Except in the easiest cases, calculations of this group are scarce. Toric varieties over an algebraically closed field of characteristic 0 provide a nontrivial class of higher dimensional varieties for which calculations of $B'(X)$ can sometimes be made. These calculations are the purpose of this article.

Each toric variety X is determined by a combinatorial object Δ in real affine space called a fan. Tied into the structure of the fan are arithmetic properties of sublattices of free \mathbb{Z}-lattices. Our arguments therefore ultimately reduce questions about $B'(X)$ to calculations with integer matrices.

In §1 we determine the Brauer group $B(X) = B'(X)$ of any nonsingular toric variety X (Theorem 1.1). This group is a direct sum of finitely many copies of finite cyclic groups and copies of \mathbb{Q}/\mathbb{Z}. The algebras generating this group are given explicitly as smash products of cyclic Galois extensions of X. In §2 we consider toric varieties whose singular locus has codimension at most 2 everywhere in X. Let T_N denote the torus identified with an open subset of X, $B'(T_N/X)$ the elements in $B'(X)$ split by T_N, and \bar{X} a T_N-invariant desingularization of X. In Theorem 2.2 we construct an exact sequence $0 \to B'(T_N/X) \to B'(X) \to B'(\bar{X}) \to 0$ which reduces the calculation of $B'(X)$ to the calculation of $B'(T_N/X)$. The hypotheses on X in §2 imply we can assume the associated fan Δ contains cones of dimension at most 2. Corresponding to each cone τ_i of dimension 2 is an irreducible closed subvariety $V_i = \text{orb} \tau_i$ and an affine neighborhood U_{τ_i} of V_i which has a finite cyclic divisor class group $\text{Cl}(U_{\tau_i})$. If Δ has 2-dimensional cones τ_1, \ldots, τ_m, we construct an exact sequence (Theorem 2.3)

$$0 \to \text{Pic}(X) \to \text{Cl}(X) \to \bigoplus_{i=1}^m \text{Cl}(U_{\tau_i}) \to B'(T_N/X) \to 0.$$
For each prime number \(p \) we find a subset \(\tau_1, \ldots, \tau_s \) (after a suitable relabelling) of \(\{\tau_1, \ldots, \tau_m\} \) such that \([\bigoplus_{i=1}^s \text{Cl}(U_{\tau_i})]_p \cong [\text{B}'(T_N/X)]_p \). We calculate the Brauer group of any toric surface (Corollary 2.9). In this case \(\text{B}'(T_N/X) \) is nontrivial when there is a cycle of divisors on \(X \) whose pairwise consecutive intersections are singular points on \(X \) whose local rings all have divisor class groups of order divisible by a common prime \(p \). An analogous statement holds for \(X \) of higher dimension. We employ terminology and notation of [12] for toric varieties and [11] for étale cohomology.

Following the notation terminology of [12] let \(r > 0 \) be an integer and \(N = \mathbb{Z}^r \) a free abelian group of rank \(r \). Let \(\Delta \) be a finite fan on \(N_\mathbb{R} \) and \(X = T_N \text{emb}(\Delta) \) the associated toric variety containing the \(r \)-dimensional torus \(T_N \) as an open subset defined over the algebraically closed field \(k \) of characteristic 0. Let \(N' \) be the subgroup of \(N \) generated by \(\bigcup_{\sigma \in \Delta} \sigma \cap N \). The basis theorem for finitely generated abelian groups gives a basis \(n_1, \ldots, n_r \) of \(N \) such that \(N' = \mathbb{Z}a_1n_1 \oplus \mathbb{Z}a_2n_2 \oplus \cdots \oplus \mathbb{Z}a_sn_r \) where the \(a_i \) are nonnegative integers and \(a_1|a_2| \cdots |a_{r-1} \) for \(1 \leq i \leq r-1 \). Call \(\{a_1, \ldots, a_r\} \) the set of invariant factors of \(\Delta \) (or \(X = T_N \text{emb}(\Delta) \)). Let \(\text{B}(X) \) denote the Brauer group of Azumaya algebras on \(X \) and \(\text{B}'(X) \) the torsion subgroup of \(H^2(X, G_m) \) the cohomological Brauer group of \(X \). Our principal result of §1 is

Theorem 1.1. If \(X = T_N \text{emb}(\Delta) \) is nonsingular and \(a_1, \ldots, a_r \) is the set of invariant factors of \(X \), then

\[
\text{B}(X) = \text{B}'(X) \cong \bigoplus_{i=1}^{r-1} \text{Hom}(\mathbb{Z}/a_i, \mathbb{Q}/\mathbb{Z})^{r-i}.
\]

We list two special cases of Theorem 1.1.

Corollary 1.2. If \(\Delta \) contains a cone \(\sigma \) such that \(\dim \sigma \geq r-1 \), then \(\text{B}(X) = (0) \).

Proof. Since \(X \) is nonsingular, [12, Theorem 1.10] implies there is a basis \(n_1, \ldots, n_r \) of \(N \) such that \(\mathbb{R}_{\geq 0} n_1 + \cdots + \mathbb{R}_{\geq 0} n_{r-1} \subset \sigma \). Since each \(n_i \in \sigma \cap N \), all of the invariant factors \(a_i = 1 \) for \(1 \leq i \leq r-1 \). So \(\text{B}(X) = (0) \) by Theorem 1.1. \(\Box \)

Corollary 1.3. \(\text{B}(X) \) is finite if and only if \(\text{Rank}_{\mathbb{Z}}(N') \geq r - 1 \). In this case

\[
\text{B}(X) \cong \bigoplus_{i=1}^{r-1} (\mathbb{Z}/a_i)^{r-i}.
\]

The rest of this section is devoted to a proof of Theorem 1.1. From now on we assume \(X = T_N \text{emb}(\Delta) \) is nonsingular. Along the way we will obtain explicit information about the Azumaya algebras on \(X \) and show the Brauer group \(\text{B}(X) \) of Azumaya algebras on \(X \) is equal to the cohomological Brauer group \(\text{B}'(X) = H^2(X, G_m) \).

Let \(\Gamma = \{0, \rho_1, \ldots, \rho_n\} \) be the fan on \(N_\mathbb{R} \) consisting of all cones in \(\Delta \) of dimension \(\leq 1 \) and let \(U = T_N \text{emb}(\Gamma) \). The open immersion \(U \hookrightarrow X \) induces the isomorphisms of the next lemma.

Lemma 1.4. For each positive integer \(\nu \),

\[
(a) \quad H^1(X, \mathbb{Z}/\nu) \cong H^1(U, \mathbb{Z}/\nu),
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(b) \(H^2(X, \mathbb{Z}/\nu) \cong H^2(U, \mathbb{Z}/\nu) \),
(c) \(B'(X) \cong B'(U) \).

Proof. Let \(X, U \) be as above and let \(Z = X - U \). Then part of the long exact sequence of cohomology with supports [11, Proposition 1.25] is

\[
H^2_Z(X, \mathbb{Z}/\nu) \to H^1(X, \mathbb{Z}/\nu) \to H^1(U, \mathbb{Z}/\nu) \to H^2_Z(X, \mathbb{Z}/\nu)
\]

\[
\to H^2(X, \mathbb{Z}/\nu) \to H^2(U, \mathbb{Z}/\nu) \to H^2_Z(X, \mathbb{Z}/\nu)
\]

since the codimension of \(Z \) in \(X \) is \(\geq 2 \), [11, Lemma 9.1, p. 268] implies \(H^2_Z(X, \mathbb{Z}/\nu) = (0) \) for \(s < 4 \), which proves (a) and (b) in our context. There is an exact sequence [3, Theorem 1.c]

\[
0 \to H^2(X, G_m) \to H^2(U, G_m) \to K_Z(X, \mu)
\]

and \(H^2_Z(X, \mu) \cong \lim \longrightarrow H^2_Z(X, \mathbb{Z}/\nu) = (0) \), which proves (c). \(\square \)

Notice that \(N' = \langle \bigcup_{\sigma \in \Delta} \sigma \cap N \rangle = \langle \bigcup_{i=1}^r \rho_i \cap N \rangle \) so as a consequence of Lemma 1.4(c) we can assume that \(\Delta = \{0, \rho_1, \ldots, \rho_n\} \) and \(X = U \). We write \(\rho_k = \mathbb{R}_{\geq 0} \eta_k \) where \(\eta_k \in N \) and \(\eta_k \) is primitive (the GDC of the coordinates of \(\eta_k \) is 1). Let \(n_1, \ldots, n_r \) be a basis for \(N \) with \(N' = \mathbb{Z}a_1n_1 \oplus \cdots \oplus \mathbb{Z}a_nn_r \) and \(a_i|a_{i+1} \) for \(1 \leq i \leq r \). \(\{a_1, \ldots, a_r\} \) is the set of invariant factors of \(\Delta \).

Let \(m_1, \ldots, m_r \) be a dual basis for \(M = \text{Hom}(N, \mathbb{Z}) \). Then \(T_N = \text{Spec} k[M] \). An element \(\sum a_im_i \) in \(M \) is usually identified with the Laurent monomial \(x_1^{a_1}x_2^{a_2}\cdots x_r^{a_r} \) and \(k[M] \) with \(k[x_1, x_1^{-1}, \ldots, x_r, x_r^{-1}] \). Let \(\nu \) be a positive integer and fix a primitive \(\nu \)-th root of unity \(\zeta \). Given units \(\alpha, \beta \) in \(k[x_1, x_1^{-1}, \ldots, x_r, x_r^{-1}] \), the symbol algebra \((\alpha, \beta)_\nu \) is the associative \(k \)-algebra generated by elements \(u, v \) subject to the relations \(u^\nu = \alpha, \nu^\nu = \beta \), and \(uv = \zeta vu \). In what follows, we choose to identify \((x_i, x_j)_\nu \) as \((m_i, m_j)_\nu \) and work in \(k[M] \). By [10, Theorem 6], \(\nu B(T_N) \) is a free \(\mathbb{Z}/\nu \)-module with basis given by the set of symbol algebras \(\{(m_i, m_j)_\nu\} \subseteq i < j \leq r \) for each \(\nu \geq 2 \). Since \(T_N \) is an open subset of \(X \) and \(X \) is nonsingular, \(B'(X) \) is a subgroup of \(B(T_N) \) by restriction and our object is to identify this subgroup explicitly.

From [4, Corollary 1.4] there is an exact sequence

\[
0 \to B'(X) \to B(T_N) \to \bigoplus_{i=1}^n H^1(\text{orb } \rho_i, \mathbb{Q}/\mathbb{Z})
\]

where \(\text{orb } \rho_i \) is the \(T_N \)-invariant divisor on \(X = T_N \text{ emb}(\Delta) \) corresponding to the face \(\rho_i \) of \(\Delta \). Given a symbol algebra \((\alpha, \beta)_\nu \) representing a class in \(B(T_N) \), the ramification map \(a \) agrees with the tame symbol (see the discussion following [4, Remark 1.7] and [14, Theorem 8, p. 155]). This means the \(k \)-th coordinate of \(a((\alpha, \beta)_\nu) \), the ramification of \((\alpha, \beta)_\nu \) along \(\text{orb } \rho_k \), is identified with a cyclic Galois extension of \(\text{orb } \rho_k \) of degree \(\nu \). Over the function field \(K(\text{orb } \rho_k) \) this extension is given by adjoining the \(\nu \)-th root of \(\alpha^v_k/(\beta)^v_k \) where \(v_k \) is the valuation on \(K(X) \) determined by the prime divisor \(\text{orb } \rho_k \).

From the remarks above, to determine the ramification of an arbitrary algebra \(\Lambda \) representing an element in \(B(T_N) \) along \(\text{orb } \rho_k \) it suffices to determine \(K(\text{orb } \rho_k) \) and \(v_k(m_j) \) for each \(k, j \). The following lemma is well known. We include its short proof for completeness and to fix notation.
Lemma 1.5. Let \(\eta_k \) be the primitive vector in \(N \cap \rho_k \) and \(\langle , \rangle \) the natural inner product from \(M \times N \to \mathbb{Z} \).

(a) \(K(\text{orb } \rho_k) \) is the quotient field of \(k[\eta_k^\perp] \).

(b) \(v_k(m) = \langle m, \eta_k \rangle \).

Proof. Since \(\eta_k \) is primitive there is a primitive \(\mu_k \in M \) with \(\langle \mu_k, \eta_k \rangle = 1 \). Let \(\eta_k^\perp = \{ m \in M | \langle m, \eta_k \rangle = 0 \} \). Then \(M = \eta_k^\perp \oplus \mathbb{Z} \mu_k \) since

\[
0 \to \eta_k^\perp \to M \overset{\varphi}{\to} \mathbb{Z} \to 0
\]
splits, where \(\varphi(m) = \langle m, \eta_k \rangle \). The affine coordinate ring of

\(U_{\rho_k} = T_N \text{emb}\{0, \rho_k\} \)

is \(k[\eta_k^\perp, \mu_k] \). Localizing \(X \) along \(\text{orb } \rho_k \) is equivalent to localizing \(U_{\rho_k} \) along \(\text{orb } \rho_k \). The prime ideal corresponding to \(\text{orb } \rho_k \) is the principal ideal in \(k[\eta_k^\perp, \mu_k] \) generated by \(\mu_k \). Hence \(\mu_k \) is a local parameter along \(\text{orb } \rho_k \). \(K(\text{orb } \rho_k) \) is the quotient field of \(k[\eta_k^\perp, \mu_k]/(\mu_k) \) giving (a). The valuation \(v_k \) of any \(m \in M \) is the \(\mu_k \)-coordinate when \(m \) is written in terms of the decomposition \(M = \eta_k^\perp \oplus \mathbb{Z} \mu_k \). Thus \(v_k(m) = \langle m, \eta_k \rangle \). □

Keeping the notation above, define a homomorphism \(\text{ram}_{\text{orb } \rho_k} : \nu \mathbb{B}(T_N) \to M/\nu M \) by letting \(\text{ram}_{\text{orb } \rho_k}(m_i, m_j)_\nu = \langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j + \nu M \) be the assignment on the basis for \(\nu \mathbb{B}(T_N) \), and extending by \(\mathbb{Z}/\nu \)-linearity.

Lemma 1.6. \((m_i, m_j)_\nu \) is unramified along \(\text{orb } \rho_k \) if and only if

\[
\text{ram}_{\text{orb } \rho_k}(m_i, m_j)_\nu = 0.
\]

Proof. The ramification of \((m_i, m_j)_\nu \) along \(\text{orb } \rho_k \) corresponds to the cyclic extension of the affine coordinate ring \(k[\eta_k^\perp] \) of \(\text{orb } \rho_k \) obtained by adjoining the \(\nu \)-th root of \(v_k(m_j)m_i - v_k(m_i)m_j = \langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j \). (Note \((\langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j, \eta_k) = 0 \) so \(\langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j \in \eta_k^\perp \).) Thus, \((m_i, m_j)_\nu \) is unramified along \(\text{orb } \rho_k \) if and only if \(\langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j \) is a \(\nu \)-th power in \(k[\eta_k^\perp] \) if and only if \(\langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j \in \nu M \) if and only if \(\text{ram}_{\text{orb } \rho_k}(m_i, m_j)_\nu = 0 \). □

Let \(\Lambda \) be any Azumaya algebra representing a class in \(\nu \mathbb{B}(T_N) \). We have seen \(\Lambda \) is equivalent to \(\prod_{i \leq j} (m_i, m_j)^{e_{ij}} \) where \(0 \leq e_{ij} < \nu \). Moreover the class of \(\Lambda \) determines and is determined by the integers \(e_{ij} \). Associate to the class represented by \(\Lambda \) in \(\nu \mathbb{B}(T_N) \) the matrix

\[
M_\Lambda = \\
\begin{bmatrix}
0 & e_{12} & e_{13} & \cdots & e_{1r} \\
-e_{12} & 0 & e_{23} & \cdots & e_{2r} \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & \ddots \\
-e_{1r} & -e_{2r} & \cdots & -e_{r-1,r} & 0
\end{bmatrix}
\]

Lemma 1.7. (a) The assignment \(\Lambda \to M_\Lambda \) induces a monomorphism

\[
\phi : \nu \mathbb{B}(T_N) \to \text{Hom}_\mathbb{Z}(N, M/\nu M).
\]

(b) \(\Lambda \) is unramified along \(\text{orb } \rho_k \) if and only if \(M_\Lambda \cdot \eta_k = 0 \).
Proof. (a) The matrix M_A defines the indicated homomorphism $\phi(\Lambda)$ by representing elements in N as column vectors with respect to the basis n_1, \ldots, n_r; the elements in M as column vectors with respect to the dual basis m_1, \ldots, m_r, and following left multiplication by M_A by reduction modulo νM. Since multiplication of symbols corresponds to addition of exponents modulo ν, it is clear that ϕ is a homomorphism. If $\phi(\Lambda) = M_A = 0$, then each $e_{ij} = 0$, so $\Lambda = 0$ in $B(T_N)$. Thus ϕ is a monomorphism.

(b) Write $\eta_k = \sum_{i=1}^r \eta_{ki} n_i$ and let $\Lambda = \prod_{i<j}(m_i, m_j)_{\nu_i}^{e_{ij}}$. Then

$$\text{ram}_{\text{orb} \rho_k}(m_i, m_j)_\nu = \langle m_j, \eta_k \rangle m_i - \langle m_i, \eta_k \rangle m_j = \eta_{kj} m_i - \eta_{ki} m_j.$$

Hence

$$\text{ram}_{\text{orb} \rho_k}(\Lambda) = \text{ram}_{\text{orb} \rho_k} \left(\prod_{i<j}(m_i, m_j)_{\nu_i}^{e_{ij}} \right) = \sum_{i<j} e_{ij} \eta_{kj} m_i - e_{ij} m_j + \nu M$$

$$= \sum_{i=1}^r \sum_{j=i+1}^r e_{ij} \eta_{kj} m_i - \sum_{i=1}^r \sum_{j=i+1}^r e_{ij} \eta_{ki} m_j + \nu M$$

$$= \sum_{i=1}^r \sum_{j=i+1}^r e_{ij} \eta_{kj} m_i - \sum_{j=1}^r \sum_{i=j+1}^r e_{ji} \eta_{kj} m_i + \nu M$$

$$= M_A \cdot \begin{bmatrix} \eta_{k1} \\ \vdots \\ \eta_{kr} \end{bmatrix}.$$

As we observed in the proof of Lemma 1.6, $\text{ram}_{\text{orb} \rho_k}(\Lambda) = m + \nu M$ for some $m \in \eta_k^\perp$. The ramification of Λ along $\text{orb} \rho_k$ is the cyclic extension of $k[\eta_k^\perp]$ obtained by adjoining the νth root of m and this extension is split (Λ is unramified along $\text{orb} \rho_k$) if and only if $m \in \nu \eta_k^\perp$. Since η_k^\perp is a direct summand of M, Λ is unramified along $\text{orb} \rho_k$ if and only if $m \in \nu M$ if and only if

$$M_A \cdot \begin{bmatrix} \eta_{k1} \\ \vdots \\ \eta_{kr} \end{bmatrix} = 0. \quad \Box$$

Theorem 1.8. Let $X = T_N \text{emb}(\Delta)$ be a nonsingular toric variety and a_1, \ldots, a_r the set of invariant factors of X. Then $B'(X)$ is the subgroup of $B(T_N)$ represented by algebra classes $\prod_{i<j}(m_i, m_j)_{\nu_i}^{e_{ij}}$ where $\nu_i|a_i$, $1 \leq i \leq r$.

Proof. The exact sequence (1) and Lemma 1.7 imply $\nu B'(X)$ consists of those algebra classes Λ in $\nu B(T_N)$ such that $M_A \cdot \eta_k = 0$ for the primitive vector η_k on each 1-dimensional cone ρ_k in Δ ($1 \leq k \leq n$). If N' is the subgroup of N generated by $\bigcup_{\sigma \in \Delta} \sigma \cap N$ then N' is generated by $\{\eta_k\}_{k=1}^n$ so Λ represents a class in $\nu B'(X)$ if and only if M_A vanishes on N'. For each $\nu > 0$ we have
the commutative diagram with exact rows and columns

\[
\begin{array}{ccc}
0 & \longrightarrow & \nu B(T_N) \\
\uparrow & & \uparrow \\
0 & \longrightarrow & \nu B'(X)
\end{array}
\longrightarrow
\begin{array}{ccc}
\Hom_{\mathbb{Z}}(N, M/\nu M) & \longrightarrow & \Hom_{\mathbb{Z}}(N'/N, M/\nu M) \\
\uparrow & & \uparrow \\
0 & & 0
\end{array}
\]

Taking the direct limit over all $\nu \geq 2$ gives a monomorphism $B'(X) \to \Hom_{\mathbb{Z}}(N'/N, M \otimes \mathbb{Q}/\mathbb{Z})$.

Let n_1, \ldots, n_r be a basis for N such that $N' = \mathbb{Z}a_1n_1 \oplus \cdots \oplus \mathbb{Z}a_rn_r$ and $a_i|a_{i+1}$ for $1 \leq i \leq r - 1$. That is, a_1, \ldots, a_r is the set of invariant factors for X. Then $\Hom_{\mathbb{Z}}(N'/N, M \otimes \mathbb{Q}/\mathbb{Z}) \cong \Hom_{\mathbb{Z}}(\bigoplus \mathbb{Z}a_1n_1, M \otimes \mathbb{Q}/\mathbb{Z})$. This means $B'(X)$ is contained in the subgroup of $B(T_N)$ of algebra classes $\prod\langle m_i, m_j \rangle_{v_i}$ where $0 < v_i$ and $v_i|a_i$, $1 \leq i \leq r$. Conversely, if $v_i|a_i$ and $v_i \geq 1$ then the matrix M_Λ for $(m_i, m_j)_v$ has a $+1$ in the ith entry and a -1 in the jth entry. A typical element in N' is $x = \lambda_1a_1n_1 + \cdots + \lambda_r a_r n_r$ and $M_\Lambda \cdot x = \lambda_j a_j m_i - \lambda_i a_i m_j \in \mathbb{Z}M_\Lambda$. Thus $(m_i, m_j)_v$ represents an element in $B'(X)$. So $B'(X) = \{ \prod\langle m_i, m_j \rangle_{v_i} | 0 < v_i$ and $v_i|a_i \}$. □

Now it follows that $B'(X) \cong \bigoplus_{i=1}^{r-1} \Hom(\mathbb{Z}/a_i, \mathbb{Q}/\mathbb{Z})^{r-i}$. To complete the proof of Theorem 1.1 it suffices to show $B(X) = B'(X)$. It suffices to find an Azumaya algebra Λ on X such that $K(X) \otimes \Lambda$ is equivalent to $(m_i, m_j)_v$ for each $v_i|a_i$.

Lemma 1.9. Let X be as in Theorem 1.8 and let $N' = \langle \bigcup_{\sigma \in \Delta} \sigma \cap N \rangle$. Let $\nu \geq 2$ and let $M_\nu = \{ m \in M | \langle m, n' \rangle \equiv 0 \pmod{\nu} \text{ for all } n' \in N' \}$. If (ν, a_i) is the greatest common divisor of ν and a_i, then

\[
H^1(X, \mathbb{Z}/\nu) \cong M_\nu/\nu M \cong \bigoplus_{i=1}^{r} \mathbb{Z}/(\nu, a_i).
\]

Proof. Restriction induces an embedding $H^1(X, \mathbb{Z}/\nu) \to H^1(T_N, \mathbb{Z}/\nu)$. The correspondence which assigns to each element $m \in M$ the cyclic extension of T_N obtained by adjoining the νth root of m induces an isomorphism $M/\nu M \cong H^1(T_N, \mathbb{Z}/\nu)$. An element $m + \nu M$ corresponds to an element of $H^1(X, \mathbb{Z}/\nu)$ if and only if $K(X)(m^{1/\nu})$ is unramified along orb ρ_k for $1 \leq k \leq n$ if and only if the restriction of m to orb ρ_k is a unit in the coordinate ring $k[\eta_k, \mu_k]$ of orb ρ_k if and only if $v_k(m) \equiv 0 \pmod{\nu}$ if and only if $\langle m, \eta_k \rangle \equiv 0 \pmod{\nu}$ where unexplained notation is as in Lemma 1.5. Thus

\[
H^1(X, \mathbb{Z}/\nu) = \{ m \in M | \langle m, \eta_k \rangle \equiv 0 \pmod{\nu} \text{ for all } 1 \leq k \leq n \} + \nu M \\
= \{ m \in M | \langle m, n' \rangle \equiv 0 \pmod{\nu} \text{ for all } n' \in N' \} + \nu M \\
= M_\nu/\nu M.
\]

But $N' = \mathbb{Z}a_1n_1 \oplus \cdots \oplus \mathbb{Z}a_r n_r$ so it is easy to check that

\[
M_\nu/\nu M \cong \bigoplus_{i=1}^{r} \mathbb{Z} \left(\frac{\nu}{(a_i, \nu)} m_i \right) / \mathbb{Z}(\nu m_i) \cong \bigoplus_{i=1}^{r} \mathbb{Z}/(a_i, \nu). \quad \Box
\]
Lemma 1.10. If X is as in Theorem 1.8, then $\mathcal{B}(X) = \mathcal{B}'(X)$.

Proof. It suffices to show each $(m_i, m_j)_{\nu_i}$ is in the image of the cup product map $H^1(X, \mathbb{Z}/\nu_i) \times H^1(X, \mu_{\nu_i}) \rightarrow \mathcal{B}(X)$ when $\nu_i \mid a_i$, since cup products correspond to taking smash products of cyclic Galois extensions and thus are Azumaya algebras (e.g. [6]).

If $a_j = 0$, both $m_i, m_j \in M_{\nu_i}$ since $\nu_i/(a_i, \nu_i) = \nu_i/(0, \nu_i) = 1 = \nu_i/(0, \nu_i)$. If $a_j \neq 0$, then $(m_i, m_j)_{\nu_i} \sim (m_i, m_j)_{a_j/\nu_i} \sim ((a_j/\nu_i)m_i, m_j).$ But $a_j/(a_i, a_j) = a_j/a_i$ which divides a_j/ν_i since $\nu_i \mid a_i$. Thus $(a_j/\nu_i)m_i$ and m_j are both in M_{a_j} and $(m_i, m_j)_{\nu_i}$ is equivalent to an algebra in the image of the cup product map $H^1(X, \mathbb{Z}/a_j) \times H^1(X, \mu_{a_j}) \rightarrow a_j\mathcal{B}(X)$. So $\mathcal{B}(X) = \mathcal{B}'(X)$. □

As a result of observations made so far, we can show the following proposition.

Proposition 1.11. Let $\prod_{i<j}(m_i, m_j)_{e_{ij}}$ represent a class in $\mathcal{B}(T_N)$ of order ν. Let M_Λ be the matrix transformation in $\text{Hom}(N, M/\nu M)$ defined in Lemma 1.7 and let t be the rank of $\text{kernel}(M_\Lambda)$. Then there exists a direct summand P of M with rank(P) = $r - t$ and an Azumaya algebra L over $k[P]$ with $\Lambda \cong k[M] \otimes_{k[P]} L$. No direct summand of M of smaller rank has this property.

Proof. Find a basis n_1, \ldots, n_r of N such that $\text{ker}(M_\Lambda) = \mathbb{Z}b_1n_1 \oplus \mathbb{Z}b_2n_2 \oplus \cdots \oplus \mathbb{Z}b_rn_r$ and $b_i|b_{i+1}$ for $1 \leq i \leq r - 1$. Since $\text{ker}(M_\Lambda)$ has rank t, $b_i \neq 0$ and $b_{t+i} = 0$ for $i \geq 1$.

Let P be a direct summand of M and assume Λ is obtained by extending an algebra over $k[P]$. Let m_1', \ldots, m_r' be a basis for P and extend this basis to a basis for M. We can assume $\Lambda = \prod_{i<j \leq s}(m_i', m_j')_{e_{ij}}$. If n_1', \ldots, n_r' is the dual basis to m_1', \ldots, m_r', then the matrix of the transformation M_Λ with respect to this new basis pair has a kernel which contains a direct summand of N of rank $r - s$. Therefore $t \geq r - s$ so $s \geq r - t$. Now let m_1, \ldots, m_r be a dual basis for M with respect to n_1, \ldots, n_r. The matrix M_Λ with respect to this new basis is

$$M_\Lambda = \begin{bmatrix}
0 & 0 & e_{t+1,t} & \cdots & e_{t+1,r} \\
0 & -e_{t+1,t} & 0 & \cdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & -e_{t+1,r} & \cdots & 0 & 0
\end{bmatrix}.$$

So Λ is defined on the torus $k[m_{t+1}, \ldots, m_r, -m_{t+1}, \ldots, -m_r]$ and we can take $P = \langle m_{t+1}, \ldots, m_r \rangle$. The rank of P is $r - t$. □

2

In this section we continue to let Δ be a finite fan on N_R and $X = T_N \text{emb}(\Delta)$ the associated toric variety containing the r-dimensional torus T_N as an open subset. Assume Δ consists of cones of dimension ≤ 2 and let $\Delta(2) = \{\tau_1, \ldots, \tau_m\}$. Let $U_i = U_{\tau_i}$, $V_i = V(\tau_i) = \text{orb}(\tau_i)$ and let $V = V_1 \cup \cdots \cup V_m$. Then $X - V = T_N \text{emb}(\Delta - \Delta(2))$ is nonsingular. In this situation our first lemma gives information about the étale cohomology groups of the affine open subsets U_i of X.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 2.1. (a) For each \(i \) and each \(p \geq 0 \), we have a short exact sequence

\[
0 \to H^p(U_i, G_m) \to H^p(U_i - V_i, G_m) \to H^{p+1}_{V_i}(U_i, G_m) \to 0.
\]

(b) \(H^p(U_i, G_m) \cong H^p(T_{r-2}, G_m) \) where \(T_{r-2} \) is a torus of dimension \(r - 2 \).

Proof. First we check that \(H^p(U_i, G_m) \) is torsion for \(p \geq 2 \). For notational simplicity we suppress the subscript \(i \) from \(\tau_i, U_i, \) and \(V_i \). Now \(\tau \) is a two-dimensional cone in \(N_R \). Let \(\bar{\tau} \) be \(\tau \) viewed as a two-dimensional cone in \(\mathbb{R}^r \). Then \(U = U_{\bar{\tau}} \times T_{r-2} \) where \(T_{r-2} \) is an \((r - 2) \)-dimensional torus. Let \(R \) be the affine coordinate ring of \(U_{\bar{\tau}} \), and \(R^h \) the henselization of \(R \) at the maximal ideal \(m \) corresponding to the closed point \(\text{orb} \bar{\tau} \). Let \(R[X, X^{-1}] \) denote the affine coordinate ring of \(U \) and let \(U^h = \text{Spec} R^h[X, X^{-1}] \). Let \(V^h = V \times U^h \). Then \(V^h \) is the closed set corresponding to \(I = mR^h[X, X^{-1}] \).

The completion of \(R^h[X, X^{-1}] \) in the \(I \)-adic topology is \(\hat{R}[X, X^{-1}] \) where \(\hat{R} \) is the \(m \)-adic completion of \(R \). By [13, p. 127], we see that \((R^h[X, X^{-1}], I) \) is a Hensel pair. By [5, p. 35] \(\text{Cl}(R^h[X, X^{-1}]) \) embeds into \(\text{Cl}(\hat{R}[X, X^{-1}]) \).

Since the singularity of \(U \) is given by a finite cyclic group action [12, p. 30], it is well known that \(\text{Cl}(\hat{R}[X, X^{-1}]) = \text{Cl}(\hat{R}) \) is also finite cyclic [2, Satz 2.11]. Thus \(\text{Cl}(U^h) \) is finite. The long exact sequences for the pairs \(V \subseteq U \) and \(V^h \subseteq U^h \) give the commutative diagram

\[
\begin{array}{c}
0 \to H^{p-1}(U - V, G_m) \to H^p(U, G_m) \to H^p(U - V, G_m) \\
\downarrow \quad \downarrow \quad \downarrow \\
0 \to H^{p-1}(U^h - V^h, G_m) \to H^p(U^h, G_m) \to H^p(U^h - V^h, G_m)
\end{array}
\]

with exact rows. By excision \(H^p(U, G_m) \cong H^p_{V^h}(U^h, G_m) \) [11, p. 92]. By [15] \(H^p(U^h, G_m) \cong H^p(U^h, G_m) = H^p((\text{orb} \bar{\tau}) \times T_{r-2}, G_m) \) which is torsion for \(p \geq 2 \) since \(T_{r-2} \) is smooth [7, p. 71]. Again by [7, p. 71] \(H^p(U^h - V^h, G_m) \) and \(H^p(U - V, G_m) \) are torsion for \(p \geq 2 \). But \(H^1(U^h - V^h, G_m) = \text{Pic}(U^h - V^h) = \text{Cl}(U^h - V^h) = \text{Cl}(U^h) \) is torsion. It now follows that \(H^p(U, G_m) \) is torsion for \(p \geq 2 \).

The natural map \(U \times A^1 \to U \) and Kummer theory induce the commutative diagram

\[
\begin{array}{cccc}
0 \to H^{p-1}(U \times A^1, G_m) \otimes \mathbb{Z}/n & \to & H^p(U \times A^1, \mu_n) & \to & \gamma
\end{array}
\]

\[
\begin{array}{cc}
\alpha & \beta
\end{array}
\]

\[
\begin{array}{c}
0 \to H^{p-1}(U, G_m) \otimes \mathbb{Z}/n \\
0 \to H^p(U, \mu_n) \\
0 \to H^p(U, G_m)
\end{array}
\]

for all \(p \geq 2 \) and \(n \geq 2 \). By [11, p. 240] \(\beta \) is an isomorphism for \(p \geq 2 \). Since \(\text{Pic} U = 0 = \text{Pic}(U \times A^1) \), \(\alpha \) is an isomorphism for \(p = 2 \). Therefore, \(\gamma \) is an isomorphism for \(p = 2 \) and all \(n \geq 2 \). Taking the inductive limit over all \(n \), we have \(H^2(U \times A^1, G_m) \cong H^2(U, G_m) \). By induction on \(p \) we see that \(H^p(U \times A^1, G_m) \cong H^p(U, G_m) \) for all \(p \geq 2 \).

We can give the coordinate ring \(k[\mathcal{O}_U] \) of \(U \) a grading by the nonnegative integers such that the degree = 0 subring is the coordinate ring of \(T_{r-2} \). Since \(H^p(U \times A^1, G_m) = H^p(U, G_m) \), [8, Theorem 1.1] implies \(H^p(U, G_m) \cong \)}
\[H^p(T_{r-2}, G_m), \] which proves (b). We have a commutative diagram
\[
\begin{array}{ccc}
H^p(T_{r-2}, G_m) & \xrightarrow{\beta} & H^p(T_r, G_m) \\
\xrightarrow{\gamma} & & \xleftarrow{\delta}
\end{array}
\]
where the maps \(\beta, \gamma, \delta \) are induced from restriction. Since \(\beta \) is injective, \(\alpha \) is injective and Lemma 2.1 now follows. □

Theorem 2.2. Let \(\Delta \) be a fan which consists of cones of dimension \(\leq 2 \). Let \(\Delta' \) be a nonsingular fan obtained from \(\Delta \) by subdividing the two-dimensional faces of \(\Delta \) and let \(\tilde{X} = T_N \text{emb}(\Delta') \). Then the sequence \(0 \to B'(T_N/X) \to B'(X) \to B'((\tilde{X}) \to 0 \) (with natural maps) is exact.

Proof. Let \(\pi: \tilde{X} \to X \) be the desingularization resulting from the subdivision \(\Delta' \) of \(\Delta \) [12, Corollary 1.18] and let \(\tilde{U}_i = \pi^{-1}(U_i) \). From the long exact sequence of cohomology with supports, and the observation that \(V \) is a disjoint union of closed sets \(V_i \) (see pp. 92–93 of [11]) we have a commutative diagram with exact rows
\[
\begin{array}{cccc}
0 & \to & B'(T_N/X) & \to & B'(X) & \to & B'(X-V) & \to & H^2(T_N, G_m) \\
& & \downarrow{\alpha} & & \downarrow{=} & & \downarrow{\beta} & & \\
0 & \to & B'(\tilde{X}) & \to & B'((\tilde{X} - \pi^{-1}(V))) & \to & \bigoplus_{i=1}^{m} H^2_{\pi^{-1}(V_i)}(\tilde{U}_i, G_m)
\end{array}
\]
The second row is exact since \(\tilde{X} \) is nonsingular. First check \(\beta \) is injective. For each \(i \), Lemma 2.1 yields the commutative diagram with exact rows
\[
\begin{array}{cccc}
0 & \to & B'(U_i) & \to & B'(U_i-V_i) & \to & H^3_{V_i}(U_i, G_m) & \to & 0 \\
& & \downarrow{\alpha_i} & & \downarrow{=} & & \downarrow{\beta_i} & & \\
0 & \to & B'(\tilde{U}_i) & \to & B'(\tilde{U}_i-\pi^{-1}(V_i)) & \to & H^3_{\pi^{-1}(V_i)}(\tilde{U}_i, G_m)
\end{array}
\]
Here \(B'(U_i) = B'(U_{\tau_i} \times T_{r-2}) = B(T_{r-2}) \) by Lemma 2.1 and \(B'(U_i-V_i) = H^2(U_i-V_i, G_m) \) since \(U_i-V_i \) is nonsingular. If \(\Delta'(\tau_i) \) is the fan whose cones are the cones of \(\Delta' \) contained in \(\tau_i \), then \(\Delta'(\tau_i) \) is a nonsingular fan whose one-dimensional faces lie in a plane. The invariants for \(\tilde{U}_i = T_N \text{emb}(\Delta'(\tau_i)) \) are \(\{1, 1, 0, \ldots, 0\} \) and Theorem 1.1 implies \(B'(\tilde{U}_i) = B'(\tilde{U}_{\tau_i} \times T_{r-2}) = B(T_{r-2}) \) so \(\alpha_i \) is an isomorphism. Since \(\ker \beta_i = \coker \alpha_i \), \(\beta_i \) is injective so \(\beta \) is injective. But \(\ker \beta = \coker \alpha \), so \(\alpha \) is an epimorphism and the theorem follows. □

As a result of Theorem 2.2 and our analysis of the Brauer groups of nonsingular toric varieties in §1, we are left with the study of \(B'(T_N/X) \).

Theorem 2.3. Let \(\Delta \) be a fan which consists of cones of dimension \(\leq 2 \). Let \(\Delta(2) = \{\tau_1, \ldots, \tau_m\} \). Let \(X = T_N \text{emb}(\Delta) \) and let \(U_i = U_{\tau_i} \) be the open subsets
of X associated to the τ_i. Then there is an exact sequence

$$0 \to \text{Pic}(X) \to \text{Cl}(X) \to \bigoplus_{i=1}^{m} \text{Cl}(U_i) \to \text{B}'(T_N/X) \to 0.$$

Proof. Let $V_i = V(\tau_i) = \text{orb}(\tau_i)$ and let $V = V_1 \cup \cdots \cup V_m$. From the long exact sequence of cohomology with supports in the closed set V we have (since V is the disjoint union of the closed sets V_i)

$$\cdots \to H^1(X, G_m) \to H^1(X-V, G_m) \to \bigoplus_{i=1}^{m} H^2_{V_i}(X, G_m) \to \cdots$$

(1)

$$\to H^2(X, G_m) \to H^2(X-V, G_m) \to \bigoplus_{i=1}^{m} H^3_{V_i}(X, G_m) \to \cdots.$$

Since V has codimension 2 in X, and $X-V$ is nonsingular, $H^1(X-V, G_m) = \text{Pic}(X-V) = \text{Cl}(X-V) = \text{Cl}(X)$. Since U_i is an open neighborhood of V_i, $H^p_{V_i}(X, G_m) = H^p_{V_i}(U_i, G_m)$ for all $p \geq 0$ [11, p. 93]. From Lemma 2.1 with $p = 1$ we get the exact sequences

$$0 \to \text{Pic} U_i \to \text{Cl} U_i \to H^2_{V_i}(U_i, G_m) \to 0 \quad (1 \leq i \leq m).$$

Lemma 2.1(b) gives $\text{Pic} U_i = \text{Pic} T_{r-2} = 0$ so $\text{Cl}(U_i) = H^2_{V_i}(U_i, G_m)$. Since τ_i is simplicial, $\text{Cl}(U_i) = \text{Pic}(U_i - V_i)$ is torsion [12, Proposition 2.1]. Since $X-V$ is nonsingular, $\text{B}'(X-V) = H^2(X-V, G_m)$ and $\text{B}'(X-V) \to \text{B}(T_N)$ is injective. But $\text{Pic} X \to \text{Cl}(X)$ is injective [5]. With these identifications (1) reduces to the sequence of the theorem. □

Corollary 2.4. In the context of Theorem 2.3, if $\text{rank}_Z(N) = r \leq 3$ and $m \geq 1$, then

$$0 \to \text{Pic}(X) \to \text{Cl}(X) \to \bigoplus_{i=1}^{m} \text{Cl}(U_i) \to \text{B}'(X) \to 0$$

is exact.

Proof. We need to check $\text{B}'(X) = \text{B}'(T_N/X)$. $H^2(U_i, G_m) = H^2(T_{r-2}, G_m) = 0$ for $r \leq 3$ (Lemma 2.1 and [10]). From Lemma 2.1(a) we have (since $U_i - V_i$ is nonsingular) $\text{B}'(U_i - V_i) = H^2(U_i - V_i, G_m) = H^3_{V_i}(U_i, G_m) = H^3_{V_i}(X, G_m)$ so (1) becomes

$$0 \to \text{Pic} X \to \text{Cl}(X) \to \bigoplus_{i=1}^{m} \text{Cl}(U_i) \to \text{B}'(X) \to \text{B}'(X-V) \to \bigoplus_{i=1}^{m} \text{B}'(U_i - V_i).$$

Since $X-V$ is nonsingular, restriction induces a monomorphism $\text{B}'(X-V) \to \text{B}'(U_i - V_i)$ for each i and the corollary follows. □

The object of the rest of this section is to give an algorithm for finding for each prime p a subset τ_1, \ldots, τ_p of the two-dimensional faces of Δ such that $[\bigoplus_{i=1}^{p} \text{Cl}(U_i)]_p \cong [\text{B}'(T_N/X)]_p$. (For G a finite abelian group, G_p is the Sylow p-subgroup.) In particular, the exact sequence of Theorem 2.3 is split-exact. To the fan Δ we associated a bipartite graph Γ. The vertex set of Γ is $\Delta(1) \cup \Delta(2) = \{\rho_1, \ldots, \rho_n\} \cup \{\tau_1, \ldots, \tau_m\}$ and there is an edge in Γ connecting ρ_j and τ_j if and only if ρ_j is a face of τ_j. If Y is the T_N-invariant divisor $X-T_N$ on X, then Γ is the graph associated to Y in the sense of [4]. A
cycle Z in Γ (i.e., Z is homeomorphic to the unit circle) determines a finite set τ_1, \ldots, τ_t of two-dimensional cones and ρ_1, \ldots, ρ_t of one-dimensional faces of Δ configured as follows:

If Δ_Z is the subfan of Δ consisting of the cones $\{0, \rho_1, \ldots, \rho_t, \tau_1, \ldots, \tau_t\}$, we will show that the cohomological Brauer group of $T_N \text{emb}(\Delta_Z)$ is cyclic of order the greatest common divisor of $\{\vert \text{Cl}(U_i) \vert \}_{i=1}^t$. Of course, there may be many such cycles in Γ and the last step in the analysis is to choose for each prime p a list of cycles $(Z_i)_{i=1}^t$ and for each Z_i a face τ_i such that $[\bigoplus_{i=1}^t \text{Cl}(U_i)]_p \cong [B'(T_N/X)]_p$.

We adopt the following notation: for each two-dimensional cone τ_i in Δ (1 ≤ $i ≤ m$) let ρ_{i1} and ρ_{i2} be the one-dimensional faces of τ_i so $\tau_i = \rho_{i1} + \rho_{i2}$. We have observed $\text{Cl}(X) = \text{Cl}(X - V) = \text{Pic}(X - V)$ and $\text{Cl}(U_1) = \text{Cl}(U_1 - V_1) = \text{Pic}(U_1 - V_1)$. Now we want to present $\text{Pic}(X - V)$ and $\text{Pic}(U_1 - V_1)$ in terms of support functions on the fan $\Delta - \{\tau_1, \ldots, \tau_m\}$. If we let ρ_1, \ldots, ρ_n be the one-dimensional cones in Δ, then we can identify the support functions on $\Delta - \{\tau_1, \ldots, \tau_m\}$ with the direct sum of copies of \mathbb{Z} indexed by the ρ_i. If $\Delta_i = \{0, \rho_{i1}, \rho_{i2}\}$, then $U_i - V_i = T_N \text{emb}(\Delta_i)$. It follows from [12, Corollary 2.5] that the sequences

\begin{align*}
M &\rightarrow \bigoplus_{i=1}^n \mathbb{Z}\rho_i \rightarrow \text{Cl}(X) \rightarrow 0, \\
M &\xrightarrow{\beta} \bigoplus_{i=1}^n \mathbb{Z}\rho_{i1} \oplus \mathbb{Z}\rho_{i2} \rightarrow \text{Cl}(U_i) \rightarrow 0
\end{align*}
It is routine to check that \(\text{im} \alpha + \text{im} \beta = \ker \delta \gamma \). As a result we have a fundamental exact sequence which we exploit for the remainder of this section: (in this sequence \(\psi = \delta \gamma \)),

\[
(3) \quad \bigoplus_{j=1}^{n} \mathbb{Z} \rho_j \oplus \bigoplus_{i=1}^{m} M \xrightarrow{\alpha + \beta} \bigoplus_{i=1}^{m} (\mathbb{Z} \rho_{i1} \oplus \mathbb{Z} \rho_{i2}) \xrightarrow{\psi} B'(T_N/X) \to 0.
\]

Let \(\Gamma \) be the graph associated to \(\Delta \). Observe that \(\Gamma \) has \(2m \) edges since each \(\tau_i \) has exactly two one-dimensional faces \(\rho_{i1} \) and \(\rho_{i2} \). The free abelian group \(\bigoplus_{i=1}^{m} (\mathbb{Z} \rho_{i1} \oplus \mathbb{Z} \rho_{i2}) \) is called the edge space of \(\Gamma \). If we write \(\Gamma \) as a union of its connected components \(\Gamma_i \) we get a corresponding decomposition of \(\Delta \) into subfans \(\Delta_i \) with \(\Delta_i \cap \Delta_j = \{0\} \) whenever \(i \neq j \). The decomposition of \(\Delta \) gives an open cover of \(X \) where the elements in the open cover are \(T_N \text{emb}(\Delta_i) = X_i \) and \(X_i \cap X_j = T_N \) whenever \(i \neq j \). With this notation we can prove

Proposition 2.5. The natural map \(B'(X) \to \bigoplus_i B'(X_i) \) induces an isomorphism \(B'(T_N/X) \cong \bigoplus_i B'(T_N/X_i) \).

Proof. Assume \(\Delta = \Delta_1 \cup \Delta_2 \) where \(\Delta_1 \) and \(\Delta_2 \) are fans with \(\Delta_1 \cap \Delta_2 = \{0\} \). It is sufficient to prove \(B'(T_N/X) \cong B'(T_N/X_1) \oplus B'(T_N/X_2) \) where \(X_i = T_N \text{emb}(\Delta_i) \) (\(i = 1, 2 \)). Let \(\Delta_1(1) = \{\rho_1, \ldots, \rho_{n_1}\} \) and \(\Delta_1(2) = \{\tau_1, \ldots, \tau_{m_1}\} \) and \(\Delta_2(1) = \{r_1, \ldots, r_{n_2}\} \) and \(\Delta_2(2) = \{t_1, \ldots, t_{m_2}\} \). Also let \(\tau_i = \rho_{i1} + \rho_{i2} \) and \(t_j = r_{j1} + r_{j2} \) where \(\rho_{ik} \in \Delta_1(1) \) and \(r_{jl} \in \Delta_2(1) \). With respect to this decomposition the exact sequence (3) decomposes as

\[
\begin{align*}
\bigoplus_{j=1}^{n_1} \mathbb{Z} \rho_j \oplus \bigoplus_{i=1}^{m_1} M & \quad \bigoplus_{j=1}^{n_2} \mathbb{Z} r_j \oplus \bigoplus_{i=1}^{m_2} M \xrightarrow{\alpha_1 + \beta_1} B'(T_N/X_1) \oplus B'(T_N/X_2) \\
\bigoplus_{i=1}^{m_1} (\mathbb{Z} \rho_{i1} \oplus \mathbb{Z} \rho_{i2}) & \quad \bigoplus_{i=1}^{m_2} (\mathbb{Z} r_{i1} \oplus \mathbb{Z} r_{i2}) \xrightarrow{\psi} B'(T_N/X) \to 0.
\end{align*}
\]

But \(\text{coker}(\alpha_1 + \beta_1) \oplus (\alpha_2 + \beta_2) = B'(T_N/X_1) \oplus B'(T_N/X_2) \) by (3) so \(B'(T_N/X) = B'(T_N/X_1) \oplus B'(T_N/X_2) \). \(\square \)

Notice in Proposition 2.5 that if \(X_i \) corresponds to a connected component of \(\Gamma \) containing no two-dimensional faces \(\tau_i \) as vertices, then \(X_i = T_N \text{emb}\{0, \rho\} \) for some one-dimensional cone \(\rho \) in \(\Delta \). In this case \(X_i \) is nonsingular and \(B'(T_N/X_i) = 0 \). Thus, as a result of Proposition 2.5 we can assume \(\Gamma \) is connected and at least one vertex of \(\Gamma \) is a two-dimensional cone in \(\Delta \).

We now determine a matrix representation for the map \(\alpha + \beta \) in (3). Let \(\tau = \rho_1 + \rho_2 \in \Delta(2) \) and consider the map

\[
M \xrightarrow{\beta} \mathbb{Z} \rho_1 \oplus \mathbb{Z} \rho_2 \to \text{Cl}(U_\tau) \to 0
\]

as in (2). Pick a basis \(n_1, \ldots, n_r \) for \(N \) and a dual basis \(m_1, \ldots, m_r \) for \(M \). Let \(\eta_i \) be a primitive element in \(N \) with \(\rho_i = R_{\geq 0} \eta_i \). The matrix of \(\beta \) with respect to the basis pair \(\{m_1, \ldots, m_r\}, \{\rho_1, \rho_2\} \) is the \(2 \times r \) matrix whose \(i, j \)th entry is \(\langle m_j, \eta_i \rangle \). But \(\langle m_j, \eta_i \rangle \) is the \(j \)th coordinate of \(\eta_i \) so we can write this matrix as \(\begin{pmatrix} h_{i1} \\ \vdots \\ h_{ir} \end{pmatrix} \) where we think of \(\eta_i \) as a row vector. Therefore the map \(\beta \) in (3)

\[
\bigoplus_{i=1}^{m} M \xrightarrow{\beta} \bigoplus_{i=1}^{m} (\mathbb{Z} \rho_{i1} \oplus \mathbb{Z} \rho_{i2})
\]
has a matrix representation which is a direct sum of $2 \times r$ matrices (η_{i1}, η_{i2}) where η_{i1} and η_{i2} are the primitive generators of ρ_{i1} and ρ_{i2} expressed with respect to the basis $\{n_1, \ldots, n_r\}$. To determine the matrix for the homomorphism

$$
\bigoplus_{j=1}^{n} \mathbb{Z}\rho_j \xrightarrow{\alpha} \bigoplus_{i=1}^{m} (\mathbb{Z}\rho_{i1} \oplus \mathbb{Z}\rho_{i2})
$$

given in (3) we observe the jth column of this matrix is $\alpha(\rho_j)$. Thus the jth column has a 1 in the row determined by ρ_{ik} if $\rho_j = \rho_{ik}$. Otherwise this entry is 0. The matrix of the homomorphism $\alpha + \beta$ of (3) is then

$$
Q = \begin{bmatrix}
\alpha(\rho_1) & \cdots & \alpha(\rho_n)
\end{bmatrix}
\begin{pmatrix}
\eta_{i1} \\
\eta_{i2}
\end{pmatrix}.
$$

Note Q is an integral matrix with $2m$ rows and $n + rm$ columns, and we can identify $\text{im}(\alpha + \beta)$ with the column space of Q. Since $B'(T_{N/X}) = \text{coker}(\alpha + \beta)$ from (3), calculating $B'(T_{N/X})$ is reduced to determining the column space of Q. Our first observation is a straightforward calculation:

$$
Q \cdot \begin{bmatrix}
\eta_1 \\
\vdots \\
\eta_n \\
-I_r
\end{bmatrix} = (0)
$$

where I_r is the $r \times r$ identity matrix. Thus the last r columns of Q containing (η_{n1}, η_{n2}) are linear combinations of the preceding columns. We now assume Γ is connected, and let T be a spanning tree for Γ. We observe that in Γ each vertex τ_i is joined by edges $\tau_i - \rho_{i1}$, $\tau_i - \rho_{i2}$ to vertices ρ_{i1}, ρ_{i2} so there are $2m$ edges in Γ. Since Γ is connected, there are $n + m - 1$ edges in T [1].

Thus, if c_1, \ldots, c_e denote the edges of Γ that are not in T, then $e = m - n + 1$ and for each i at least one of $\tau_i - \rho_{i1}$, $\tau_i - \rho_{i2}$ is in T. By reindexing we can assume $c_1 = \tau_1 - \rho_{i1}$, \ldots, $c_e = \tau_e - \rho_{i2}$. We identify c_j with the basis vector ρ_{j2} in the edge space $\bigoplus_{i=1}^{m} (Z\rho_{i1} \oplus Z\rho_{i2})$. For $1 \leq i \leq m$ let n_{i1} be a primitive vector in N with $\mathbb{R}_{\geq 0} n_{i1} = \rho_{i1}$ and choose n_{i2} in N with $\{n_{i1}, n_{i2}\}$ a basis for $\mathbb{R}_{\geq 0} n_{i1} \cap N$. We can extend $\{n_{i1}, n_{i2}\}$ to a basis $\{n_{i1}, n_{i2}, \ldots, n_{ir}\}$ for N. With respect to this basis we can write $\eta_{i1} = a_i n_{i1} + b_i n_{i2}$ where the η_{ij} are as in Q. With respect to these basis choices for N and corresponding dual basis choices for M, and after deleting columns consisting of zeros, the matrix Q for $\alpha + \beta$ becomes
$Q = \begin{pmatrix}
\tau_1 - \rho_{11} & \tau_1 - \rho_{12} & \ldots & \rho_n \\
\tau_i - \rho_{11} & \tau_i - \rho_{12} & \ldots & \rho_n \\
\tau_m - \rho_{m1} & \tau_m - \rho_{m2} & \ldots & \rho_n
\end{pmatrix}
\begin{pmatrix}
\rho_1 & \rho_2 & \cdots & \rho_n \\
\alpha(\rho_1) & \alpha(\rho_2) & \cdots & \alpha(\rho_n)
\end{pmatrix}
\begin{pmatrix}
\alpha_1 \beta_1 & \alpha_2 \beta_2 & \cdots & \alpha_m \beta_m
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
[\alpha_i, \beta_i] \\
[\alpha_m, \beta_m]
\end{pmatrix}$

where the first n columns span $\text{im}\alpha$ and the last $2m$ columns span $\text{im}\beta$.

We checked in (4) above that the last 2 columns labeled α_m and β_m are linear combinations of the preceding $n + 2(m - 1)$ columns. It follows from (2) that $|b_i| = |\text{Cl}(U_{r_i})| = |\text{Cl} U_i|$. The columns β_1, \ldots, β_e are b_1c_1, \ldots, b_ec_e.

Theorem 2.6. Let Δ be a fan on $N_\mathbb{R}$ and let $X = T_N \text{emb}(\Delta)$. Assume all the cones in Δ have dimension ≤ 2. Assume the two-dimensional faces τ_1, \ldots, τ_m and one-dimensional faces ρ_1, \ldots, ρ_n of Δ can be ordered so that $\tau_i \cap \tau_{i+1} = \rho_i$ ($1 \leq i \leq m - 1$) and $\tau_m \cap \tau_1 = \rho_m$. Let b_i be the order of $\text{Cl}(U_{r_i})$. Then $B'(T_N/X)$ is cyclic of order $\gcd\{b_1, \ldots, b_m\}$.

Proof. Using Proposition 2.5 and the hypotheses, we can assume that the graph Γ is connected and consists of one cycle as shown:

We take the spanning tree T for Γ to be the graph obtained from Γ by deleting the edge $c_1 = \tau_1 - \rho_m$. Let C be the matrix whose only column is c_1 and form the augmented matrix $[Q|C]$:

$$
\begin{pmatrix}
\tau_1 - \rho_{11} & \tau_1 - \rho_{12} & \ldots & \rho_n & \alpha_1 \beta_1 & \alpha_2 \beta_2 & \cdots & \alpha_m \beta_m & c_1 \\
\tau_1 - \rho_{m1} & \tau_1 - \rho_{m2} & \ldots & \rho_n & \alpha_1 \beta_1 & \alpha_2 \beta_2 & \cdots & \alpha_m \beta_m & c_1
\end{pmatrix}
\begin{pmatrix}
\rho_1 & \rho_2 & \rho_3 & \cdots & \rho_{m-2} & \rho_{m-1} & \rho_m & \alpha_1 & \alpha_2 & \cdots & \alpha_{m-1} & \beta_{m-1} & \alpha_m & \beta_m & c_1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 & a_1 & b_1 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 1 & 0 & a_2 & b_2 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & \cdots & 1 & 0 & 0 & a_{m-1} & b_{m-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & a_m & b_m & 0
\end{pmatrix}$$
Here c_1 corresponds to the edge τ_{1-p_m} and $\bigoplus_{i=1}^{m}(\mathbb{Z}\rho_i \oplus \mathbb{Z}\rho_{i-1})$ is the edge space of Γ where $\rho_0 = \rho_m$. We observed that $B'(T_N/X)$ is the quotient of the edge space by the column space of Q. Let $[B|C]$ be the matrix whose columns are the columns labeled $\rho_1, \ldots, \rho_m, \alpha_1, \alpha_2, \ldots, \alpha_{m-1}, c_1$. We check that the columns of $[B|C]$ form a basis for the edge space by using column operations to reduce to a permutation matrix. Use column c_1 to eliminate α_1 from column α_1 and the 1 in the entry with row index τ_{1-p_m} and column index ρ_m. Then use the 1 in the new column α_1 to eliminate the 1 in the entry with row index $\tau_{1-\rho_1}$ and column index ρ_1. Use the new column ρ_1 to eliminate the a_2 in column α_2. Continue inductively, eliminating a_3, \ldots, a_{m-2} from columns indexed $\alpha_3, \ldots, \alpha_{m-2}$ and the ones in the entries with row index $\tau_{i-\rho_i}$ and column index ρ_i, for $2 \leq i \leq m-2$. At the last step use the remaining 1 in column ρ_{m-2} to eliminate a_{m-1} in column α_{m-1}. Use the new column α_{m-1} to eliminate the 1 in the entry in row $\tau_{m-1-\rho_{m-1}}$ column ρ_{m-1}. The result is a matrix whose \mathbb{Z}-rank is $2m$, which shows that $C\{c_1\}$ generates the quotient of the edge space $\bigoplus_{i=1}^{m}(\mathbb{Z}\rho_i \oplus \mathbb{Z}\rho_{i-1}) (\rho_0 = \rho_m)$ by the column space of Q. Recall that the last two columns of Q are a linear combination of the preceding ones. Thus to calculate this quotient we simply project each of the columns β_1, \ldots, β_m on $\mathbb{Z}c_1$. These projections follow the recursive pattern:

<table>
<thead>
<tr>
<th>Column vector</th>
<th>Projection on $\mathbb{Z}c_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_1 = b_1c_1$</td>
<td>b_1c_1</td>
</tr>
<tr>
<td>$\beta_2 = b_2(\rho_1 - (\alpha_1 - a_1c_1))$</td>
<td>$b_2a_1c_1$</td>
</tr>
<tr>
<td>$\beta_3 = b_3(\rho_2 - (\alpha_2 - a_2(\rho_1 - (\alpha_1 - a_1c_1))))$</td>
<td>$b_3a_2a_1c_1$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$\beta_m = b_m a_{m-1} \cdots a_2a_1c_1$</td>
<td></td>
</tr>
</tbody>
</table>

The subgroup generated by the projections of the columns β_i on $\mathbb{Z}c_1$ is the subgroup generated by dc_1 where $d = \gcd\{b_1, b_2a_1, \ldots, b_m a_{m-1} \cdots a_2a_1\}$. Since $\gcd(a_i, b_i) = 1$ for $1 \leq i \leq m$, we see $d = \gcd\{b_1, \ldots, b_m\}$. But $|b_i|$ is the order of $\text{Cl}(U_{t_i})$, so the theorem follows. \(\square\)

To extend Theorem 2.6 it is necessary to introduce some additional notation. Suppose the graph Γ we have associated to the fan Δ is connected and let T be a spanning tree for Γ. Since each vertex labeled by a two-dimensional face τ_i is connected by exactly two edges to vertices ρ_{i1} and ρ_{i2} corresponding to the one-dimensional faces of τ_i in Δ, each τ_i is a vertex in T. If $\Delta(2) = \{\tau_1, \ldots, \tau_m\}$, designate τ_m as the root node for T. Let C be the matrix whose columns are c_1, \ldots, c_e and let $[Q|C]$ be the augmented matrix similar to that used in the proof of Theorem 2.6. Then τ_1, \ldots, τ_e are leaf nodes of T and $c_i = \tau_{i-\rho_{i2}}$ for $1 \leq i \leq e$. For $e < i < m$ relabel ρ_{i1} and ρ_{i2} if necessary so the edge $\tau_{i-\rho_{i1}}$ is closer to the root node τ_m than the edge $\tau_{i-\rho_{i2}}$. In our previous analysis this amounts to permuting the basis of the edge space $\bigoplus_{i=1}^{m}(\mathbb{Z}\rho_{i1} \oplus \mathbb{Z}\rho_{i2})$. This does not affect the columns labeled $\alpha_1, \beta_1, \ldots, \alpha_e, \beta_e$ in Q. Let $[B|C]$ be the matrix obtained from $[Q|C]$ by deleting from Q the columns labeled $\beta_1, \ldots, \beta_{m-1}, \beta_m, \alpha_m$. We note that the column space of B depends on the choice of root node τ_m.

Lemma 2.7. The columns of $[B|C]$ form a basis for $\bigoplus_{i=1}^{m}(\mathbb{Z}\rho_{i1} \oplus \mathbb{Z}\rho_{i2})$, the edge space, for any choice of root node τ_m.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. If \(\Gamma \) is a tree, then \(T = \Gamma \) and \(e = 0 \). In this case we need to show that the columns of \(B \) span the edge space. Each leaf node of \(\Gamma \) must be \(\rho_{i2} \) for some \(i \) since each \(\tau_i \) is incident to two edges in \(\Gamma = T \) and \(\rho_{i1} \) is closer to the root node \(\tau_m \) than \(\rho_{i2} \). We call the pair \((\tau_i, \rho_{i2})\) a leaf node pair. If \(i = m \), then it is possible for \(\rho_{i1} \) to be a leaf node. This is the only exception and will be treated in the basis step for our induction below. Assume \((\tau_i, \rho_{i2})\) is a leaf node pair and \(i \neq m \). In \(\Delta, \rho_{i2} \) is a face of exactly one two-dimensional cone \(\tau_i \). Thus the column indexed by \(\rho_{i2} \) in \(B \) has exactly one nonzero entry which is a 1 in the row indexed \(\tau_i-\rho_{i1} \) as indicated below.

\[
\begin{pmatrix}
\rho_{i1} & \rho_{i2} & 0 \\
0 & 1 & 1 \\
1 & 0 & a_i
\end{pmatrix}
\]

Use the column indexed \(\rho_{i2} \) to eliminate \(a_i \) in the column \(\alpha_i \) by an elementary column operation, then use the new column \(\alpha_i \) to eliminate the 1 in the \(\tau_i-\rho_{i1} \) entry of column \(\rho_{i1} \). After these two steps are performed, we say we have pruned the leaf node pair from the tree \(\Gamma = T \). The two columns indexed \(\rho_{i2} \) and \(\alpha_i \) are now elementary basis vectors in our basis for the edge space and appear in no further column operations. After the columns indexed \(\rho_{i2} \) and \(\alpha_i \) are deleted, the remaining matrix is the matrix we would associate to the fan \(\Delta' \) obtained from \(\Delta \) by deleting the cones \(\rho_{i2} \) and \(\tau_i \). Apply this leaf pruning algorithm iteratively to reduce to the case where \(\Gamma \) is the tree \(\rho_{m1}-\tau_m-\rho_{m2} \). The matrix \(B \) for this tree is \(\begin{bmatrix} 1 & 0 \end{bmatrix} \). Thus our algorithm reduces the original matrix \(B \), using elementary column operations, to a permutation matrix.

If \(\Gamma \) is not a tree, let \(\tau_{1-\rho_{i1}}, \ldots, \tau_{e-\rho_{e2}} \) be the edges of \(\Gamma \) which are not in \(T \). Fix \(i, \ 1 \leq i \leq e \). Since \(\tau_i-\rho_{i1} \) is in \(T \), it follows that \(\tau_i \) is a leaf node of \(T \). We can use the column indexed \(c_i \) and elementary column operations to eliminate the entry \(a_i \) from the column indexed \(\alpha_i \) and the entry 1 in the \(\tau_i-\rho_{i1} \) entry of column \(\rho_{i1} \). After these two steps are performed, we say we have pruned the leaf node pair \((\tau_i, \rho_{i2})\) from the tree \(\Gamma = T \). The remaining matrix is the matrix we would associate to the fan \(\Delta' \) obtained from \(\Delta \) by deleting the cones \(\rho_{i2} \) and \(\tau_i \). Apply this leaf pruning algorithm iteratively to reduce to the case where \(\Gamma \) is the tree \(\rho_{m1}-\tau_m-\rho_{m2} \). The matrix \(B \) for this tree is \(\begin{bmatrix} 1 & 0 \end{bmatrix} \). Thus our algorithm reduces the original matrix \(B \), using elementary column operations, to a permutation matrix.

Corollary 2.8. Let \(\Delta \) be a fan on \(\mathbb{R}^r \) whose cones all have dimension \(\leq 2 \). If the graph \(\Gamma \) associated to \(\Delta \) is a disjoint union of trees and \(X = T_N \text{emb}(\Delta) \), then \(B'(T_N/X) = 0 \).

Proof. By Proposition 2.5 we can assume \(\Gamma \) is connected, so the hypotheses imply \(\Gamma \) is a tree. By Lemma 2.7 the columns of \(B \) span the edge space of \(\Gamma \). But the column space of \(B \) is contained in \(\text{im}(\alpha+\beta) \) in (3) \(B'(T_N/X) = 0 \).

Corollary 2.9. Let \(\Delta \) be a fan on \(\mathbb{R}^2 \) and \(X = T_N \text{emb}(\Delta) \) the associated toric surface.

(a) If \(\Delta = \{0\} \), then \(B(X) \cong \mathbb{Q}/\mathbb{Z} \).

(b) If \(\Delta \neq \{0\} \) and \(|\Delta| \neq \mathbb{R}^2\) (i.e., \(X \) is not complete), then \(B(X) = 0 \).

(c) If \(|\Delta| = \mathbb{R}^2\) (i.e., \(X \) is complete), \(\Delta(1) = \{\rho_1, \ldots, \rho_n\} \) and \(N' = \langle \rho_1 \cap N, \ldots, \rho_n \cap N \rangle \), then \(B(X) \cong N/N' \).
ON THE BRAUER GROUP OF TORIC VARIETIES

Proof. Every toric surface is a normal projective surface [12] so by [9, Corollary 9] $B(X) = B'(X)$. If $\Delta = \{0\}$, then $X = T_N$ is nonsingular and since $r = 2$, $B(X) = \mathbb{Q}/\mathbb{Z}$ [10]. If $\Delta \neq \{0\}$ and $|\Delta| \neq \mathbb{R}^2$, then the graph Γ associated to Δ is a disjoint union of trees. By Proposition 2.5 we assume Γ is a tree and contains at least one two-dimensional cone τ. By Corollary 2.8 and Corollary 2.4, $B(X) = 0$. If $|\Delta| = \mathbb{R}^2$, then Γ is a cycle. Corollary 2.4 implies $B(X) = B(T_N/X)$. If $\Delta(2) = \{\tau_1, \ldots, \tau_m\}$, then Theorem 2.6 implies $B(X)$ is cyclic of order $\gcd(|\text{Cl}(U_i)|)$ for $1 \leq i \leq m$. Let ρ_1, \ldots, ρ_m be the one-dimensional cones in Δ with $\tau_i = \rho_i + \rho_{i+1}$ (1 $\leq i \leq m$) where $\rho_{m+1} = \rho_1$ and let $\rho_i = \mathbb{R}_{>0} \eta_i$ for primitive vectors η_1, \ldots, η_m in N. Choose a basis n_1, n_2 for N with $n_1 = \eta_1$ and write $\eta_1 = a_1 n_1 + b_1 n_2$. Then $N/N' = N/\langle \eta_1, \ldots, \eta_m \rangle$ is cyclic of order $\gcd(b_1, \ldots, b_m)$. On the other hand for $(1 \leq i \leq m-1)$, $\text{Cl}(U_{i+1}) = \text{Cl}(U_i)$ is cyclic of order $|\det(\begin{smallmatrix} a_i \\ b_i \end{smallmatrix})|$ and $|\text{Cl}(U_m)| = |\det(\begin{smallmatrix} a_m \\ b_m \end{smallmatrix})|$ by (2). Since $\gcd(a_i, b_i) = 1$ for each i, an easy calculation shows $\gcd(|\text{Cl}(U_i)|) = \gcd(b_1, \ldots, b_m)$. □

To determine the p-subgroups of $B'(T_N/X)$ for each prime number p, we introduce some additional notation and terminology. Let Γ be a finite edge-weighted graph such that to each edge E is associated the positive integer $\text{weight}(E)$. Let v_p be the p-adic valuation on \mathbb{Z} and set the p-weight of $E = \text{weight}_p(E) = v_p(\text{weight}(E))$. If Γ_1 is a subgraph of Γ, let $\text{weight}_p(\Gamma_1) = \sum \text{weight}_p(E)$ where the summation is over all edges E in Γ_1. A p-maximal spanning tree for Γ is a spanning tree T for Γ such that $\text{weight}_p(T)$ is maximal among the p-weights of all spanning trees. It is clear that every connected graph has a p-maximal spanning tree. Let T be a p-maximal spanning tree for Γ and let c denote an edge of Γ not present in T. Since T is a spanning tree, the subgraph Γ_1 of Γ obtained by adding the edge c to T contains a cycle Z which is unique since there is a unique path between any two vertices of the tree T. Suppose there is some edge E in Z with $\text{weight}_p(E) < \text{weight}_p(c)$. Then we could obtain a spanning tree of larger p-weight by deleting the edge E from Γ_1. This means that if T is a p-maximal spanning tree for Γ, c is an edge of Γ not in T and Z is the unique cycle in the graph $T \cup \{c\}$, then c is an edge of minimal p-weight in Z.

Let Γ be the (connected) graph we have associated to the fan Δ whose cones all have dimension ≤ 2. Assign weights to the edges $\tau_{i-\rho_{ij}}$ of Γ by setting $\text{weight}(\tau_{i-\rho_{ij}}) = b_i = |\text{Cl}(U_{i})|$ (recall $\text{Cl}(U_{i}) = \mathbb{Z}/b_i$ is cyclic from (2)). Let T be a p-maximal spanning tree for Γ. We have labeled the edges of Γ not in T as $\tau_1 - \rho_{12}, \tau_2 - \rho_{22}, \ldots, \tau_e - \rho_{ec}$. We call the set of 2-dimensional cones $\{\tau_1, \ldots, \tau_e\}$ in Δ a p-minimal set of cones in Δ. If Γ is not connected, then we can decompose Δ as a union of fans Δ_i with $\Delta_i \cap \Delta_j = \{0\}$ when $i \neq j$ and the graphs Γ_i associated to Δ_i are connected. We define a p-minimal set of cones in Δ to be the union of p-minimal sets of cones in each Δ_i.

Theorem 2.10. Let Δ be a fan on N_R and assume every cone in Δ has dimension ≤ 2. Let $\{\tau_1, \ldots, \tau_e\}$ be a p-minimal set of cones in Δ and let $|\text{Cl}(U_{i})| = b_i$. If $X = T_N \text{emb}(\Delta)$, then $B'(T_N/X)_p \cong \bigoplus_{i=1}^e \mathbb{Z}/b_i$. This isomorphism is induced by the epimorphism ψ of (3).

Proof. By Proposition 2.5 and the discussion preceding the theorem, we can assume the graph Γ associated to the fan Δ is connected. Let T be a p-maximal spanning tree for Γ. Continuing the analysis that was begun in
the proof of Theorem 2.6 we consider the matrix \([Q|C]\) defined there. If \(\psi: \bigoplus_{i=1}^{m} (\mathbb{Z}_p \rho_1 \oplus \mathbb{Z}_p \rho_2) \to B'(T_N/X)\) is the epimorphism given in (3) and \(\mathbb{Z}_p\) is the \(p\)-adic integers, we have an epimorphism

\[
\psi_p: \bigoplus_{i=1}^{m} (\mathbb{Z}_p \rho_1 \oplus \mathbb{Z}_p \rho_2) \to B'(T_N/X)_p.
\]

It follows from Lemma 2.7 that \(\{c_1, \ldots, c_e\}\) generates \(\text{coker}(\alpha+\beta)\) so \(\{\psi_p(c_1), \ldots, \psi_p(c_e)\}\) generates \(B'(T_N/X)_p\). We check

\[
0 = \langle \psi_p(c_j) \rangle \cap \langle \psi_p(c_1), \ldots, \psi_p(c_{j-1}), \psi_p(c_{j+1}), \ldots, \psi_p(c_e) \rangle
\]

and \(\psi_p(c_j)\) has order \(p^{v_p(b_j)}\) for \(1 \leq j \leq e\) by identifying these elements in \(B'(T_N/X)\) with their corresponding preimages \(c_j + \text{image}(\alpha+\beta) \in \text{coker}(\alpha+\beta)\) in (3) and then checking the corresponding statements in \(\text{coker}(\alpha+\beta)\).

Fix \(j\) and let \(\pi\) be a permutation of \(\{1, \ldots, m\}\) with \(\pi\) chosen so \(\pi(1) = j\) where the edge \(c_j = \tau_j - \rho_s\) and the cycle in \(T \cup \{c_j\}\) is

\[
\tau_j = \tau_{\pi(1)} - \rho_1 - \tau_{\pi(2)} - \rho_2 - \cdots - \tau_{\pi(s)} - \rho_s - \tau_{\pi(1)}.
\]

Choose the vertex \(\tau_{\pi(s)}\) as the root node for \(T\). By Lemma 2.7 we know the columns of \([B|C]\) form a basis for \(\bigoplus_{i=1}^{m} (\mathbb{Z}_p \rho_1 \oplus \mathbb{Z}_p \rho_2)\). The column space of \(B\) is a submodule of \(\text{image}(\alpha+\beta)\). Project the submodule \(\mathbb{Z}_p \beta_1 + \cdots + \mathbb{Z}_p \beta_m\) of \(\text{image}(\alpha+\beta)\) onto a \(\mathbb{Z}_p\)-submodule of the column space of \(C\) over \(\mathbb{Z}_p\). Then \(\text{coker}(\alpha+\beta)_p\) is the quotient module.

If \(s+1 \leq i \leq m\) we check the projection of \(\beta_{\pi(i)}\) on \(\mathbb{Z}_p c_j\) is 0. The selection of \(\tau_{\pi(s)}\) as the root node for \(T\) gives a partial order on the vertices of \(T\). Let \(T_i\) be the subtree of \(T\) with root node \(\rho_{\pi(i)}\). This means the vertices \(v\) in \(T_i\) are those for which the unique path from \(v\) to \(\tau_{\pi(s)}\) contains \(\rho_{\pi(i)}\). In the expression for \(\beta_{\pi(i)}\) as a linear combination of the columns of \([B|C]\), the columns of \(C\) that appear are those \(c_k\) which when considered as edges of \(\Gamma\) are incident to some vertex in \(T_i\) (see the proof of Theorem 2.6). But neither \(\tau_j\) nor \(\rho_s\) are in \(T_i\) since \(i \geq s+1\) so the projection of \(\beta_{\pi(i)}\) on \(c_j\) has coefficient = 0.

If \(1 \leq i \leq s\) let the projection of \(\beta_{\pi(i)}\) on \(\bigoplus_{k=1}^{e} \mathbb{Z}_p c_k\) be \(\sum_{k=1}^{e} d_{ki} c_k\). We say in the proof of Theorem 2.6 that \(b_{\pi(i)} = \langle Cl(U_{\pi(i)})\rangle\). The projections of \(\beta_{\pi(1)}, \ldots, \beta_{\pi(m)}\) on \(\bigoplus_{k=1}^{e} \mathbb{Z}_p c_k\) are the columns of the \(e \times m\) matrix \((d_{ki})\). We have observed above that \(d_{j(s+1)} = \cdots = d_{jm} = 0\). The definitions of \(\beta_j\) and \(c_j\) imply \(\beta_j = b_j c_j\) so \(d_{k1} = 0\) if \(k \neq j\). Also \(b_{\pi(i)} | d_{ji}\) for \(2 \leq i \leq s\) and we chose \(j\) with \(v_p(b_j) = \min \{v_p(b_{\pi(1)}), \ldots, v_p(b_{\pi(s)})\}\). Thus after elementary column operations over \(\mathbb{Z}_p\) the column space of \((d_{ki})\) is equal to the column space of

\[
\begin{bmatrix}
0 & d_{12} & \cdots & d_{1m} \\
\vdots & \vdots & & \vdots \\
0 & d_{(j-1)2} & \cdots & 0 \\
b_j & 0 & \cdots & 0 \\
0 & d_{(j+1)2} & & \\
\vdots & & \ddots & \vdots \\
0 & d_{e2} & \cdots & d_{em}
\end{bmatrix}
\]
Therefore \(c_1, \ldots, c_e \) represents a basis for \(\ker(\alpha + \beta)_p \), \(B'(T_N/X)_p = \langle \psi_p(c_1) \rangle \oplus \cdots \oplus \langle \psi_p(c_e) \rangle \), and \(\langle \psi_p(c_j) \rangle \) is cyclic of order \(p^{\nu_p(b_j)} \). \(\square \)

Acknowledgment

This article was written while the first author visited at Florida Atlantic University. He thanks department chairman Jim Brewer for his hospitality.

References

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523

E-mail address: demeyer@euclid.math.colostate.edu

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431

E-mail address: ford@acc.fau.edu