Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Weil-Petersson symplectic structure at Thurston's boundary


Authors: A. Papadopoulos and R. C. Penner
Journal: Trans. Amer. Math. Soc. 335 (1993), 891-904
MSC: Primary 57M50; Secondary 30F60, 32G15
DOI: https://doi.org/10.1090/S0002-9947-1993-1089420-3
MathSciNet review: 1089420
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Weil-Petersson Kähler structure on the Teichmüller space $ \mathcal{T}$ of a punctured surface is shown to extend, in an appropriate sense, to Thurston's symplectic structure on the space $ \mathcal{M}{\mathcal{F}_0}$ of measured foliations of compact support on the surface. We introduce a space $ {\widetilde{\mathcal{M}\mathcal{F}}_0}$ of decorated measured foliations whose relationship to $ \mathcal{M}{\mathcal{F}_0}$ is analogous to the relationship between the decorated Teichmüller space $ \tilde{\mathcal{T}}$ and $ \mathcal{T}$. $ \widetilde{\mathcal{M}{\mathcal{F}_0}}$ is parametrized by a vector space, and there is a natural piecewise-linear embedding of $ \mathcal{M}{\mathcal{F}_0}$ in $ \widetilde{\mathcal{M}{\mathcal{F}_0}}$ which pulls back a global differential form to Thurston's symplectic form. We exhibit a homeomorphism between $ \tilde{\mathcal{T}}$ and $ {\widetilde{\mathcal{M}\mathcal{F}}_0}$ which preserves the natural two-forms on these spaces. Following Thurston, we finally consider the space $ \mathcal{Y}$ of all suitable classes of metrics of constant Gaussian curvature on the surface, form a natural completion $ \overline{\mathcal{Y}}$ of $ \mathcal{Y}$, and identify $ \overline{\mathcal{Y}} - \mathcal{Y}$ with $ \mathcal{M}{\mathcal{F}_0}$. An extension of the Weil-Petersson Kähler form to $ \mathcal{Y}$ is found to extend continuously by Thurston's symplectic pairing on $ \mathcal{M}{\mathcal{F}_0}$ to a two-form on $ \overline{\mathcal{Y}}$ itself.


References [Enhancements On Off] (What's this?)

  • [Ab] W. Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Math., vol. 820, Springer, 1980. MR 590044 (82a:32028)
  • [Be] M. Bestvina (in preparation).
  • [Bo] F. Bonahon, Earthquakes on Riemann surfaces and on measured geodesic laminations, Trans. Amer. Math. Soc. 330 (1992), 69-95. MR 1049611 (92f:57021)
  • [FLP] A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979). MR 568308 (82m:57003)
  • [Go] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302. MR 846929 (87j:32069)
  • [Mo] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551-577. MR 914849 (89e:57022)
  • [Pa1] A. Papadopoulos, Deux remarques sur la géométrie symplectique de l'espace des feuilletages mesurés sur une surface, Ann. Inst. Fourier (Grenoble) 36 (1986), 127-141. MR 850748 (87k:57023)
  • [Pa2] -, Sur la forme bilinéaire associée à un réseau ferroviare, C. R. Acad. Sci. Paris Sér. I 301 (1985), 833-836. MR 822843 (87b:57013)
  • [Pa3] -, Sur le bord de Thurston d'une surface non compacte, Math. Ann. 282 (1988), 353-359. MR 967017 (90e:57020)
  • [Pa4] -, Trois études sur les feuilletages mesurés, Thèse d'Etat, Orsay, 1989.
  • [Pe1] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), 299-339. MR 919235 (89h:32044)
  • [Pe2] -, Weil-Petersson volumes of moduli spaces, J. Differential Geometry 35 (1992), 559-608. MR 1163449 (93d:32029)
  • [PH] R. C. Penner and J. L. Harer, Combinatorics of train tracks, Ann. of Math. Stud., no. 125, Princeton Univ. Press, Princeton, N. J., 1992. MR 1144770 (94b:57018)
  • [Sh] H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33-71. MR 0145106 (26:2641)
  • [Wo] S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), 207-234. MR 690844 (85e:32028)
  • [Th] W. P. Thurston, Some stretch maps between hyperbolic surfaces, Topology (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M50, 30F60, 32G15

Retrieve articles in all journals with MSC: 57M50, 30F60, 32G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1089420-3
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society