Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Estimates for some Kakeya-type maximal operators


Author: Jose Barrionuevo
Journal: Trans. Amer. Math. Soc. 335 (1993), 667-682
MSC: Primary 42B25; Secondary 47B38
DOI: https://doi.org/10.1090/S0002-9947-1993-1150012-9
MathSciNet review: 1150012
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use an abstract version of a theorem of Kolmogorov-Seliverstov-Paley to obtain sharp $ {L^2}$ estimates for maximal operators of the form:

$\displaystyle {\mathcal{M}_\mathcal{B}}f(x) = \mathop {\sup }\limits_{x \in S \in \mathcal{B}} \frac{1}{{\vert S\vert}}\int_S {\vert f(x - y)\vert dy} $

. We consider the cases where $ \mathcal{B}$ is the class of all rectangles in $ {{\mathbf{R}}^n}$ congruent to some dilate of $ {[0,1]^{n - 1}} \times [0,{N^{ - 1}}]$; the class congruent to dilates of $ {[0,{N^{ - 1}}]^{n - 1}} \times [0,1]$ ; and, in $ {{\mathbf{R}}^2}$ , the class of all rectangles with longest side parallel to a particular countable set of directions that include the lacunary and the uniformly distributed cases.

References [Enhancements On Off] (What's this?)

  • [B] J. Barrionuevo, Ph.D. thesis, University of Rochester, 1990.
  • [CDR] M. Christ, J. Duoandikoetxea, and J. L. Rubio de Francia, Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J. 53 (1986). MR 835805 (88d:42032)
  • [Cor 1] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977). MR 0447949 (56:6259)
  • [Cor 2] -, Geometric Fourier analysis, Ann. Inst. Fourier (Grenoble) 32 (1982). MR 688026 (84i:42029)
  • [Cor 3] -, Maximal functions, covering lemmas and Fourier multipliers, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R.I., 1979, pp. 29-50. MR 545237 (81f:42017)
  • [Cor 4] -, The multiplier problem for the polygon, Ann. of Math. 105 (1977). MR 0438022 (55:10943)
  • [CF] A. Cordoba and R. Fefferman, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci. U.S.A. 74 (1977). MR 0433117 (55:6096)
  • [F] C. A. Fefferman, A note on spherical summation multipliers, Israel J. Math 15 (1973).
  • [Ha] Young-Hwa Ha, $ {L^2}$-boundedness of spherical maximal operators with multidimensional parameter set, Proc. Amer. Math. Soc. 105 (1989), 401-412. MR 955460 (90e:42037)
  • [Hor] L. Hörmander, The analysis of linear partial differential operators, Vol. I, Springer-Verlag, Berlin and New York, 1983.
  • [KS1] A. N. Kolmogorov and G. Seliverstov, Sur la convergence des séries de Fourier, C.R. Acad. Sci. Paris 178 (1925).
  • [KS2] -, Sur la convergence des séries de Fourier, Rend. Accad. Naz. Lincei 3 (1926).
  • [NSW] A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978). MR 0466470 (57:6349)
  • [SI] E. M. Stein, Lecture Notes, Princeton Univ., 1978-1979 academic year.
  • [S2] -, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)
  • [Str 1] J. Strömberg, Maximal functions associated to uniformly distributed families of directions, Ann. of Math. 108 (1978).
  • [Str 2] -, Weak estimates on a maximal function with rectangles in certain directions, Ark. Mat. 15 (1977).
  • [Z] A. Zygmund, Trigonometric series, 2nd ed., vols. 1, 2, Cambridge Univ. Press, London, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 47B38

Retrieve articles in all journals with MSC: 42B25, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1150012-9
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society