Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A composite coincidence degree with applications to boundary value problems of neutral equations


Authors: L. H. Erbe, W. Krawcewicz and J. H. Wu
Journal: Trans. Amer. Math. Soc. 335 (1993), 459-478
MSC: Primary 47H11; Secondary 34K10, 34K40, 47H15, 47N20
DOI: https://doi.org/10.1090/S0002-9947-1993-1169080-3
MathSciNet review: 1169080
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a topological degree theory for the nonlinear problem $ L(I - B)(x) = G(x)$ with applications to a class of boundary value problems of neutral equations, where $ L$ is an unbounded Fredholm operator of index zero, $ B$ is condensing and $ G$ is $ L$-compact.


References [Enhancements On Off] (What's this?)

  • [1] S. R. Bernfeld, G. Ladde and V. Lakshmikantham, Nonlinear boundary value problems and several Lyapunov functions for functional differential equations, Boll. Un. Mat. Ital. 10 (1974), 602-613. MR 0369857 (51:6086)
  • [2] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1972), 97-115. MR 1511644
  • [3] J. Cronin, Periodic solutions of nonautonomous equations, Boll. Un. Math. Ital. (4) 6 (1972), 45-54. MR 0330703 (48:9040)
  • [4] -, Equations with unbounded nonlinearities, J. Differential Equations 14 (1973), 581-596. MR 0344956 (49:9695)
  • [5] L. H. Erbe, W. Krawcewicz, and J. H. Wu, Leray-Shauder degree for semilinear Fredholm maps and periodic boundary value problems of neutral equations, Nonlinear Analysis, TMA 15 (1990), 747-764. MR 1074953 (91m:47095)
  • [6] M. Faheem and R. M. Rao, A boundary value problem for functional differential equations of neutral type, J. Math. Phys. Sci (4) 18 (1984), 381-404. MR 803965 (87g:34072)
  • [7] R. E. Gaines and J. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Math., vol. 568, Springer-Verlag, Berlin and New York, 1977. MR 0637067 (58:30551)
  • [8] A. Granas, The theory of compact vector fields and some of its applications to the topology of functional spaces. (I), Rozprawy Mat. 30 (1962), 1-93. MR 0149253 (26:6743)
  • [9] G. B. Gustafson and K. Schmitt, Periodic solutions of hereditary differential equations, J. Differential Equations 13 (1977), 567-587. MR 0342775 (49:7520)
  • [10] -, A note on periodic solutions for delay-differential systems, Proc. Amer. Math. Soc. 42 (1974), 161-166. MR 0326109 (48:4454)
  • [11] J. K. Hale and J. Mawhin, Coincidence degree and periodic solutions of neutral equations, J. Differential Equations 15 (1974), 295-307. MR 0336004 (49:780)
  • [12] G. Hetzer, Some remarks on $ {\phi _t}$ on operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations, Ann. Soc. Sci. Bruxelles Ser. I 89 (1975), 497-508. MR 0385653 (52:6513)
  • [13] -, Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type, Comment. Math. Univ. Carolin. 16 (1975), 121-138. MR 0364814 (51:1068)
  • [14] M. A. Krasnosel'skii, The operator of translation along trajectories of ordinary differential equations, Amer. Math. Soc., Providence, R.I., 1968. MR 0223640 (36:6688)
  • [15] M. A. Krasnosel'skii and E. A. Lifschits, Some criteria for the existence of periodic oscillation in nonlinear systems, Automat. Remote Control 9 (1973), 1374-1377.
  • [16] W. Krawcewicz, Contribution à la théorie des équations non linéaires dans les espaces de Banach, Dissertationes Math. 273 (1988), 1-83. MR 989165 (90c:47113)
  • [17] L. Leray and J. Schauder, Topologie et équations functionnelles, Ann. Sci. École Norm. Sup. 51 (1934), 45-78.
  • [18] J. Mawhin, Periodic solutions of nonlinear functional differential equations, J. Differential Equations 10 (1971), 240-261. MR 0294823 (45:3891)
  • [19] -, Equivalence theorems for nonlinear operator equations and coincidence degree theorem for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. MR 0328703 (48:7045)
  • [20] J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Ser. in Math., no. 40, Amer. Math. Soc., Providence, R.I., 1977. MR 525202 (80c:47055)
  • [21] -, Compacité monotonie et convexité dans l'étude de problèmes aux limites semi-linéaires, Séminaire d'Analyse Moderne 19, Université de Sherbrooke, 1981.
  • [22] E. M. Muhamadiev and D. B. Sadovskii, Estimation of the spectral radius of a certain operator that is connected with equations of neutral type, Math. Notes 13 (1973), 39-45. MR 0320482 (47:9020)
  • [23] R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pure Appl. (4) 89 (1971), 217-258. MR 0312341 (47:903)
  • [24] -, The fixed point index and asymptotic fixed point theorems for $ k$-set contractions, Bull. Amer. Math. Soc. 75 (1969), 490-495. MR 0246285 (39:7589)
  • [25] -, Degree theory for local condensing maps, J. Math. Anal. Appl. 37 (1972), 741-766. MR 0306986 (46:6107)
  • [26] B. N. Sadovskii, Application of topological methods in the theory of periodic solutions of nonlinear differential-operator equations of neutral type, Soviet Math. Dokl. 12 (1971), 1543-1547. MR 0310721 (46:9819)
  • [27] K. Schmidt, Equations différentielles et fonctionnelles non linéaires, Hermann, Paris, 1973, pp. 65-78.
  • [28] P. Volkmann, Démonstration d'un théorème de coincidence par la méthode de Granas, Bull. Soc. Math. Belgique Ser. B 36 (1984), 235-242. MR 777199 (86e:47067)
  • [29] P. Waltman and J. S. W. Wong, Two point boundary value problems for nonlinear functional differential equations, Trans. Amer. Math. Soc. 164 (1972), 39-54. MR 0287126 (44:4333)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H11, 34K10, 34K40, 47H15, 47N20

Retrieve articles in all journals with MSC: 47H11, 34K10, 34K40, 47H15, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1169080-3
Keywords: Essential map, topological degree, topological transversality, coincidence problem, condensing map, boundary value problems, neutral equations, periodic solution
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society