Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Detecting algebraic (in)dependence of explicitly presented functions (some applications of Nevanlinna theory to mathematical logic)


Author: R. H. Gurevič
Journal: Trans. Amer. Math. Soc. 336 (1993), 1-67
MSC: Primary 03C62; Secondary 03B30, 30D35, 32A22
DOI: https://doi.org/10.1090/S0002-9947-1993-0991961-1
MathSciNet review: 991961
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider algebraic relations between explicitly presented analytic functions with particular emphasis on Tarski's high school algebra problem.

The part not related directly to Tarski's high school algebra problem. Let $ U$ be a connected complex-analytic manifold. Denote by $ \mathcal{F}(U)$ the minimal field containing all functions meromorphic on $ U$ and closed under exponentiation $ f \mapsto {e^f}$. Let $ {f_j} \in \mathcal{F}(U)$, $ {p_j} \in \mathcal{M}(U) - \{ 0\} $ for $ 1 \leq j \leq m$, and $ {g_k} \in \mathcal{F}(U)$, $ {q_k} \in \mathcal{M}(U) - \{ 0\} $ for $ 1 \leq k \leq n$ (where $ \mathcal{M}(U)$ is the field of functions meromorphic on $ U$). Let $ {f_i} - {f_j} \notin \mathcal{H}(U)$ for $ i \ne j$ and $ {g_k} - {g_l} \notin \mathcal{H}(U)$ for $ k \ne 1$ (where $ \mathcal{H}(U)$ is the ring of functions holomorphic on $ U$). If all zeros and singularities of

$\displaystyle h = \frac{{\sum\nolimits_{j = 1}^m {{p_j}{e^{{f_j}}}} }} {{\sum\nolimits_{k = 1}^n {{q_k}{e^{{g_k}}}} }}$

are contained in an analytic subset of $ U$ then $ m = n$ and there exists a permutation $ \sigma $ of $ \{ 1, \ldots ,m\} $ such that $ h = ({p_j}/{q_{\sigma (j)}}) \cdot {e^{{f_j} - {g_{\sigma (j)}}}}$ for $ 1 \leq j \leq m$. When $ h \in \mathcal{M}(U)$, additionally $ {f_j} - {g_{\sigma (j)}} \in \mathcal{H}(U)$ for all $ j$ .

On Tarski's high school algebra problem. Consider $ L = \{ $-terms in variables and $ 1$, $ + $, $ \cdot $, $ \uparrow \} $ , where $ \uparrow :a$, $ b \mapsto {a^b}$ for positive $ a$, $ b$. Each term $ t \in L$ naturally determines a function $ \bar t$ : $ {({{\mathbf{R}}_ + })^n} \to {{\mathbf{R}}_ - }$ , where $ n$ is the number of variables involved. For $ S \subset L$ put $ \bar S = \{ \bar t\vert t \in S\} $ .

(i) We describe the algebraic structure of $ \bar \Lambda $ and $ \bar{\mathcal{L}}$ , where $ \Lambda = \{ t \in L\vert$ if $ u \uparrow v$ occurs as a subterm of $ t$ then either $ u$ is a variable or $ u$ contains no variables at all, and $ \mathcal{L} = \{ t \in L\vert$ if $ u \uparrow v$ occurs as a subterm of $ t$ then $ u \in \Lambda \} $. Of these, $ \bar \Lambda $ is a free semiring with respect to addition and multiplication but $ \bar{\mathcal{L}}$ is free only as a semigroup with respect to addition. A function $ \bar t \in \bar S$ is called $ + $-prime in $ \bar S$ if $ \bar t \ne \bar u + \bar v$ for all $ u$, $ v \in S$ and is called multiplicatively prime in $ \bar S$ if $ \bar t = \bar u \cdot \bar v \Rightarrow \bar u = 1$ or $ \bar v = 1$ for $ u$, $ v \in S$. A function is called $ ( + , \cdot )$-prime in $ \bar S$ if it is both $ + $-prime and multiplicatively prime in $ \bar S$. A function in $ \bar \Lambda $ is said to have content $ 1$ if it is not divisible by constants in $ {\mathbf{N}} - \{ 1\} $ or by $ \ne 1\ ( + , \cdot )$-primes of $ \bar \Lambda $ . The product of functions of content $ 1$ has content $ 1$ . Let $ P$ be the multiplicative subsemigroup of $ \bar \Lambda $ of functions of content $ 1$ . Then $ \bar{\mathcal{L}}$ as a semiring is isomorphic to the semigroup semiring $ \bar \Lambda ({ \oplus _f}{P_f})$, where each $ {P_f}$ is a copy of $ P$ and $ f$ ranges over the $ \ne 1\; + $-primes of $ \bar{\mathcal{L}}$.

(ii) We prove that if $ t$, $ u \in \mathcal{L}$ and $ {{\mathbf{R}}_ + } \vdash t = u$ (i.e., if $ \bar t = \bar u$) then Tarski's "high school algebra" identities $ \vdash t = u$. This result covers a conjecture of C. W. Henson and L. A. Rubel. (Note: this result does not generalize to arbitrary $ t$, $ u \in L$ . Moreover, the equational theory of $ ({{\mathbf{R}}_ + };\;1, + , \cdot , \uparrow )$ is not finitely axiomatizable.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C62, 03B30, 30D35, 32A22

Retrieve articles in all journals with MSC: 03C62, 03B30, 30D35, 32A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-0991961-1
Article copyright: © Copyright 1993 American Mathematical Society