Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Countable closed $ {\rm LFC}$-groups with $ p$-torsion


Author: Felix Leinen
Journal: Trans. Amer. Math. Soc. 336 (1993), 193-217
MSC: Primary 20F24; Secondary 20E22
DOI: https://doi.org/10.1090/S0002-9947-1993-1080170-6
MathSciNet review: 1080170
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ LFC$ be the class of all locally $ FC$-groups. We study the existentially closed groups in the class $ LF{C_p}$ of all $ LFC$-groups $ H$ whose torsion subgroup $ T(H)$ is a $ p$-group. Differently from the situation in $ LFC$, every existentially closed $ LF{C_p}$-group is already closed in $ LF{C_p}$, and there exist $ {2^{{\aleph _0}}}$ countable closed $ LF{C_P}$-groups $ G$. However, in the countable case, $ T(G)$ is up to isomorphism always a unique locally finite $ p$-group with similar properties as the unique countable existentially closed locally finite $ p$-group $ {E_p}$.


References [Enhancements On Off] (What's this?)

  • [1] H. Ensel, Die Automorphismengruppe der abzählbaren, existentiell abgeschlossenen $ {\mathfrak{p}_A}$-Gruppe $ {E_A}$ , Arch. Math. 51 (1988), 198-203. MR 960394 (90c:20046)
  • [2] R. J. Gregorac, On permutational products of groups, J. Austral. Math. Soc. 10 (1969), 111-135. MR 0245686 (39:6992)
  • [3] P. Hall, Some constructions for locally finite groups, J. London Math. Soc. 34 (1959), 305-319. MR 0162845 (29:149)
  • [4] F. Haug, An amalgamation theorem for locally $ FC$-groups, J. London Math. Soc. (2) 43 (1991), 421-430. MR 1113385 (92d:20048)
  • [5] -, Countable existentially closed locally $ FC$-groups, J. Algebra 143 (1991), 1-24. MR 1128642 (92g:20055)
  • [6] -, Existenziell abgeschlossene $ LFC$-Gruppen, Dissertation, Tübingen, 1987.
  • [7] G. Higman, Amalgams of $ p$-groups, J. Algebra 1 (1964), 301-305. MR 0167527 (29:4799)
  • [8] O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups, North-Holland, Amsterdam, 1973. MR 0470081 (57:9848)
  • [9] F. Leinen, Existentially closed $ L\mathfrak{X}$-groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 191-226. MR 847666 (87k:20005)
  • [10] -, Existentially closed groups in locally finite group classes, Comm. Algebra 13 (1985), 1991-2024. MR 795488 (87b:20042)
  • [11] -, Existentially closed locally finite $ p$-groups, J. Algebra 103 (1986), 160-183. MR 860695 (88b:20004)
  • [12] -, Group rings of existentially closed locally finite $ p$-groups, Publ. Math. Debrecen 35 (1988), 289-294. MR 1005294 (90g:16012)
  • [13] F. Leinen and R. E. Phillips, Existentially closed central extensions of locally finite $ p$-groups, Math. Proc. Cambridge Philos. Soc. 100 (1986), 281-301. MR 848853 (87k:20057)
  • [14] A. Macintyre and S. Shelah, Uncountable universal locally finite groups, J. Algebra 43 (1976), 168-175. MR 0439625 (55:12511)
  • [15] B. Maier, Existenziell abgeschlossene lokal endliche $ p$-Gruppen, Arch. Math. 37 (1981), 113-128. MR 640796 (83e:20005)
  • [16] -, On countable locally described structures, Ann. Pure Appl. Logic 35 (1987), 205-246. MR 904324 (88j:03020)
  • [17] P. M. Neumann, On the structure of standard wreath products of groups, Math. Z. 84 (1964), 343-373. MR 0188280 (32:5719)
  • [18] R. Rado, A proof of the basis theorem for finitely generated abelian groups, J. London Math. Soc. 26 (1951), 74-75. MR 0042406 (13:104d)
  • [19] M. J. Tomkinson, $ FC$-groups, Pitman Research Notes in Math., no. 96, Boston, London, and Melbourne, 1984. MR 742777 (86a:20039)
  • [20] K. Varadarajan, Pseudo-mitotic groups, J. Pure Appl. Algebra 37 (1985), 205-213. MR 796410 (87i:20055)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F24, 20E22

Retrieve articles in all journals with MSC: 20F24, 20E22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1080170-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society