Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rational approximations to the dilogarithm


Author: Masayoshi Hata
Journal: Trans. Amer. Math. Soc. 336 (1993), 363-387
MSC: Primary 11J82; Secondary 11J72
DOI: https://doi.org/10.1090/S0002-9947-1993-1147401-5
MathSciNet review: 1147401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The irrationality proof of the values of the dilogarithmic function $ {L_2}(z)$ at rational points $ z = 1/k$ for every integer $ k \in ( - \infty , - 5] \cup [7,\infty )$ is given. To show this we develop the method of Padé-type approximations using Legendre-type polynomials, which also derives good irrationality measures of $ {L_2}(1/k)$. Moreover, the linear independence over $ {\mathbf{Q}}$ of the numbers $ 1$, $ \log (1 - 1/k)$, and $ {L_2}(1/k)$ is also obtained for each integer $ k \in ( - \infty , - 5] \cup [7,\infty )$ .


References [Enhancements On Off] (What's this?)

  • [1] F. Beukers, A note on the irrationality of $ \zeta (2)$ and $ \zeta (3)$, Bull. London Math. Soc. 11 (1979), 268-272. MR 554391 (81j:10045)
  • [2] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I, J. Math. Pures Appl. 58 (1979), 445-476. MR 566655 (81j:10047)
  • [3] -, Measures of irrationality, transcendence and algebraic independence. Recent progress (Number Theory Days, 1980), London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 11-82. MR 697257 (84h:10046)
  • [4] D. V. Chudnovsky and G. V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications, Lecture Notes in Math., vol. 1052, Springer-Verlag, 1984, pp. 37-84. MR 750662 (86a:11029)
  • [5] R. Dvornicich and C. Viola, Some remarks on Beukers' integrals (Number Theory, Budapest), Colloq. Math. Soc. János Bolyai, vol. 51, North-Holland, 1987, pp. 637-657. MR 1058238 (91f:11050)
  • [6] A. Erdélyi et al., Higher transcendental functions, vol. 1, McGraw-Hill, New York, 1953.
  • [7] M. Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math. 407 (1990), 99-125. MR 1048530 (91i:11081)
  • [8] -, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. 69 (1990), 133-173. MR 1067449 (91m:11048)
  • [9] L. Lewin, Polylogarithms and associated functions, North-Holland, New York, 1981. MR 618278 (83b:33019)
  • [10] W. Maier, Potenzreihen irrationalen Grenzwertes, J. Reine Angew. Math. 156 (1927), 93-148.
  • [11] A. van der Poorten, A proof that Euler missed--Apéry's proof of the irrationality of $ \zeta (3)$, Math. Intelligencer 1 (1979), 195-203. MR 547748 (80i:10054)
  • [12] E. A. Rukhadze, A lower bound for the approximation of $ \ln 2$ by rational numbers, Vestnik Moskov. Univ. Ser. I Math. Mekh. (1987), no. 6, 25-29. (Russian) MR 922879 (89b:11064)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11J82, 11J72

Retrieve articles in all journals with MSC: 11J82, 11J72


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1147401-5
Keywords: Dilogarithm, irrationality measure, Padé approximation
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society