Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The value semigroups of prime divisors of the second kind in $ 2$-dimensional regular local rings


Author: Sunsook Noh
Journal: Trans. Amer. Math. Soc. 336 (1993), 607-619
MSC: Primary 13H05
DOI: https://doi.org/10.1090/S0002-9947-1993-1080735-1
MathSciNet review: 1080735
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, it is shown that the value semigroup of a prime divisor of the second kind on a $ 2$-dimensional regular local ring is symmetric. Further, a necessary and sufficient condition for two prime divisors of the second kind on a $ 2$-dimensional regular local ring to have the same value semigroup is obtained.


References [Enhancements On Off] (What's this?)

  • [A] S. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321-348. MR 0082477 (18:556b)
  • [AM] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley, 1969. MR 0242802 (39:4129)
  • [Az] A. Azevedo, Lecture on plane algebroid curve at Purdue University, 1980
  • [Hos] M. A. Hoskin, Zero-dimensional valuation ideals associated with plane curves branches, Proc. London Math. Soc. (3) 6 (1956), 70-99. MR 0074905 (17:665b)
  • [H] C. Huneke, Complete ideals in two-dimensional regular local rings, Microprogram in Commutative Algebra, MSRI, Springer-Verlag, 1987. MR 1015525 (90i:13020)
  • [HS] C. Huneke and J. D. Sally, Birational extensions in dimension two and integrally closed ideals, J. Algebra 115 (1988), 481-500. MR 943272 (89e:13025)
  • [K1] E. Kunz, The value-semigroup of a one dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751. MR 0265353 (42:263)
  • [K2] -, Introduction to commutative algebra and algebraic geometry, Birkhäuser, 1985.
  • [L1] J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195-279. MR 0276239 (43:1986)
  • [L2] -, On complete ideals in regular local rings, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Vol. I, Academic Press, 1988, pp. 203-231. MR 977761 (90g:14003)
  • [L3] -, Handwritten notes, 1966.
  • [M] S. McAdam, Asymptotic prime divisors, Lecture Notes in Math., vol. 1023, Springer-Verlag, 1983. MR 722609 (85f:13018)
  • [Ma] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, 1986. MR 879273 (88h:13001)
  • [N] M. Nagata, Local rings, Interscience, New York, 1962. MR 0155856 (27:5790)
  • [No] S. Noh, Sequence of valuation ideals of prime divisors of the second kind in $ 2$-dimensional regular local rings, J. Algebra (to appear). MR 1223666 (94d:13003)
  • [R] D. Rees, Lectures on the asymptotic theory of ideals, London Math. Soc. Lecture Note Series, vol. 113, Cambridge Univ. Press, 1988. MR 988639 (90d:13012)
  • [S] J. Sally, One-fibered ideals, Microprogram in Commutative Algebra, MSRI, Springer-Verlag, 1987. MR 1015533 (90h:13003)
  • [Z] O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math. 60 91938), 151-204. MR 1507308
  • [ZS] O. Zariski and P. Samuel, Commutative algebra, Vol. 2, Van Nostrand Princeton, N.J., 1960. MR 0120249 (22:11006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13H05

Retrieve articles in all journals with MSC: 13H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1080735-1
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society