The value semigroups of prime divisors of the second kind in -dimensional regular local rings

Author:
Sunsook Noh

Journal:
Trans. Amer. Math. Soc. **336** (1993), 607-619

MSC:
Primary 13H05

DOI:
https://doi.org/10.1090/S0002-9947-1993-1080735-1

MathSciNet review:
1080735

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, it is shown that the value semigroup of a prime divisor of the second kind on a -dimensional regular local ring is symmetric. Further, a necessary and sufficient condition for two prime divisors of the second kind on a -dimensional regular local ring to have the same value semigroup is obtained.

**[A]**Shreeram Abhyankar,*On the valuations centered in a local domain*, Amer. J. Math.**78**(1956), 321–348. MR**0082477**, https://doi.org/10.2307/2372519**[AM]**M. F. Atiyah and I. G. Macdonald,*Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0242802****[Az]**A. Azevedo, Lecture on plane algebroid curve at Purdue University, 1980**[Hos]**M. A. Hoskin,*Zero-dimensional valuation ideals associated with plane curve branches*, Proc. London Math. Soc. (3)**6**(1956), 70–99. MR**0074905**, https://doi.org/10.1112/plms/s3-6.1.70**[H]**Craig Huneke,*Complete ideals in two-dimensional regular local rings*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 325–338. MR**1015525**, https://doi.org/10.1007/978-1-4612-3660-3_16**[HS]**Craig Huneke and Judith D. Sally,*Birational extensions in dimension two and integrally closed ideals*, J. Algebra**115**(1988), no. 2, 481–500. MR**943272**, https://doi.org/10.1016/0021-8693(88)90274-8**[K1]**Ernst Kunz,*The value-semigroup of a one-dimensional Gorenstein ring*, Proc. Amer. Math. Soc.**25**(1970), 748–751. MR**0265353**, https://doi.org/10.1090/S0002-9939-1970-0265353-7**[K2]**-,*Introduction to commutative algebra and algebraic geometry*, Birkhäuser, 1985.**[L1]**Joseph Lipman,*Rational singularities, with applications to algebraic surfaces and unique factorization*, Inst. Hautes Études Sci. Publ. Math.**36**(1969), 195–279. MR**0276239****[L2]**Joseph Lipman,*On complete ideals in regular local rings*, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 203–231. MR**977761****[L3]**-, Handwritten notes, 1966.**[M]**Stephen McAdam,*Asymptotic prime divisors*, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR**722609****[Ma]**Hideyuki Matsumura,*Commutative ring theory*, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR**879273****[N]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[No]**Sunsook Noh,*Sequence of valuation ideals of prime divisors of the second kind in 2-dimensional regular local rings*, J. Algebra**158**(1993), no. 1, 31–49. MR**1223666**, https://doi.org/10.1006/jabr.1993.1122**[R]**D. Rees,*Lectures on the asymptotic theory of ideals*, London Mathematical Society Lecture Note Series, vol. 113, Cambridge University Press, Cambridge, 1988. MR**988639****[S]**Judith D. Sally,*One-fibered ideals*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 437–442. MR**1015533**, https://doi.org/10.1007/978-1-4612-3660-3_24**[Z]**Oscar Zariski,*Polynomial Ideals Defined by Infinitely Near Base Points*, Amer. J. Math.**60**(1938), no. 1, 151–204. MR**1507308**, https://doi.org/10.2307/2371550**[ZS]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13H05

Retrieve articles in all journals with MSC: 13H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1080735-1

Article copyright:
© Copyright 1993
American Mathematical Society