Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebraic cycles and the Hodge structure of a Kuga fiber variety


Author: B. Brent Gordon
Journal: Trans. Amer. Math. Soc. 336 (1993), 933-947
MSC: Primary 14C30; Secondary 14C25, 14F20, 14K30
DOI: https://doi.org/10.1090/S0002-9947-1993-1097167-2
MathSciNet review: 1097167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tilde A$ denote a smooth compactification of the $ k$-fold fiber product of the universal family $ {A^1} \to M$ of elliptic curves with level $ N$ structure. The purpose of this paper is to completely describe the algebraic cycles in and the Hodge structure of the Betti cohomology $ {H^{\ast} }(\tilde A,\mathbb{Q})$ of $ \tilde A$ , for by doing so we are able (a) to verify both the usual and generalized Hodge conjectures for $ \tilde A$ ; (b) to describe both the kernel and the image of the Abel-Jacobi map from algebraic cycles algebraically equivalent to zero (modulo rational equivalence) into the Griffiths intermediate Jacobian; and (c) to verify Tate's conjecture concerning the algebraic cycles in the étale cohomology $ H_{{\text{et}}}^{\ast} (\tilde A \otimes \bar{\mathbb{Q}},{\mathbb{Q}_l})$. The methods used lead also to a complete description of the Hodge structure of the Betti cohomology $ {H^{\ast} }({E^k},\mathbb{Q})$ of the $ k$-fold product of an elliptic curve $ E$ without complex multiplication, and a verification of the generalized Hodge conjecture for $ {E^k}$ .


References [Enhancements On Off] (What's this?)

  • [AMRT] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactifications of locally symmetric spaces, Math. Sci. Press, Brookline, Mass., 1975. MR 0457437 (56:15642)
  • [BO] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. Ecole Norm. Sup. 7 (1974), 181-202. MR 0412191 (54:318)
  • [C] C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), 215-290. MR 0444662 (56:3012)
  • [D1] P. Deligne, Formes modulaires et représentations $ l$-adiques, Séminaire Bourbaki, Lecture Notes in Math., vol 179, Springer, New York, 1971, pp. 139-172.
  • [D2] -, Travaux de Shimura, Séminaire Bourbaki, vol. 1970/71, Exposés 382-399, Lecture Notes in Math., vol. 244, Springer, New York and Berlin, 1971, pp. 123-165. MR 0498581 (58:16675)
  • [D3] -, Théorie de Hodge. II, III, Publ. Math. Inst. Hautes Etudes Sci. 40 (1971), 5-58; 44 (1974), 5-77. MR 0498551 (58:16653a)
  • [D4] -, Hodge cycles on abelian varieties (Notes by J. S. Milne), Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer, New York, 1982, pp. 9-100.
  • [F] G. Faltings, $ p$-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299. MR 924705 (89g:14008)
  • [FM] J.-M. Fontaine and W. Messing, $ p$-adic periods and $ p$-adic étale cohomology, preprint.
  • [Go1] B. B. Gordon, Algebraically defined subspaces in the cohomology of a Kuga fiber variety, Pacific J. Math. 131 (1988), 261-276. MR 922218 (89b:11048)
  • [Go2] B. B. Gordon, Topological and algebraic cycles in Kuga-Shimura varieties, Math. Ann. 279 (1988), 395-402. MR 922423 (89j:11059)
  • [Gf1] P. A. Griffiths, Some results on algebraic cycles on algebraic manifolds, Algebraic Geometry, Bombay 1968, Oxford Univ. Press, New York and Oxford, 1969, pp. 93-191. MR 0257092 (41:1746)
  • [Gf2] -, Some transcendental methods in the study of algebraic cycles, Several Complex Variables II, Maryland 1980, Lecture Notes in Math., vol. 185, Springer, New York,, 1971, pp. 1-46. MR 0309937 (46:9041)
  • [GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [Gr1] A. Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299-303. MR 0252404 (40:5624)
  • [Gr2] -, Le groupe de Brauer III: Exemples et compléments, Dix exposé sur la cohomologie des schémas, Adv. Stud, in Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 88-188. MR 0244271 (39:5586c)
  • [Ha] R. Hall, On the cohomology of Kuga's fiber variety, Pacific J. Math. 75 (1975), 411-422. MR 506200 (80a:10041)
  • [HK] R. Hall and M. Kuga, Algebraic cycles in a fiber variety, Sci. Papers College Gen. Ed. Univ. Tokyo 25 (1975), 1-6. MR 0469919 (57:9699)
  • [H] W. V. D. Hodge, The topological invariants of algebraic varieties, Proc. Inernat. Congr. Math. (1950), 182-182. MR 0046075 (13:679i)
  • [J] U. Jannsen, Mixed motives, preprint.
  • [Ko] K. Kodaira, On compact complex analytic surfaces. I, II, III, Ann. of Math. 71 (1960), 111-152; 77 (1963), 563-626; 78 (1963), 1-40. MR 0132556 (24:A2396)
  • [K1] M. Kuga, Fibre varieties over a symmetric space whose fibres are abelian varieties, vols. I and II, Univ. of Chicago, Chicago, Ill., 1964.
  • [K2] -, Fibre varieties over symmetric space whose fibres are abelian varieties, Proc. of the U.S.-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, Nippon Hyoronsha, 1966, pp. 72-81.
  • [K3] -, Algebraic cycles in gtfabv, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 13-29. MR 657869 (84g:14042)
  • [KL] M. Kuga and J. V. Leahy, Shimura's abelian varieties as Weil's higher Jacobian varieties, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 229-253. MR 0263832 (41:8431)
  • [KS] M. Kuga and G. Shimura, On the zeta function of a fiber variety whose fibres are abelian varieties, Ann. of Math. 82 (1965), 487-539. MR 0184942 (32:2413)
  • [L] A. Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), 202-237. [McD] I. G. MacDonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford. 1979. MR 520233 (80j:14043)
  • [Ml] J. S. Milne, Etale cohomology, Princeton Univ. Press, Princeton, N. J., 1980. MR 559531 (81j:14002)
  • [Mm1] D. Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, pp. 347-351. MR 0206003 (34:5828)
  • [Mm2] -, A note on Shimura's paper "Discontinuous groups and abelian varieties", Math. Ann. 181 (1969), 345-351. MR 0248146 (40:1400)
  • [Mr] J. P. Murre, Abel-Jacobi equivalence versus incidence equivalence for algebraic cycles of codimension two, Topology 24 (1985), 361-367. MR 815486 (87a:14007)
  • [Mt1] V. K. Murty, Algebraic cycles on abelian varieties, Duke Math. J. 50 (1983), 487-504. MR 705036 (85b:14029)
  • [Mt2] -., Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984), 197-206. MR 744607 (85m:14063)
  • [Sb] B. Schoeneberg, Elliptic modular functions, Springer-Verlag, New York, Heidelberg and Berlin, 1974. MR 0412107 (54:236)
  • [Sl] A. J. Scholl, Motives for modular forms, preprint. MR 1047142 (91e:11054)
  • [Sm1] G. Shimura, Introduction to the arithmetic theory of automorphic forms, Publ. Math. Soc. Japan 11, Princeton Univ. Press, Princeton, N. J., 1971. MR 0314766 (47:3318)
  • [Sm2] -, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291-311. MR 0120372 (22:11126)
  • [Sm3] -, On canonical models of arithmetic quotients of bounded symmetric domains. I, II, Ann. of Math. (2) 91 (1970), 144-222; (2) 92 (1970), 528-549. MR 0257031 (41:1686)
  • [So1] T. Shioda, What is known about the Hodge conjecture?, Algebraic Varieties and Analytic Varieties, Adv. Stud, in Pure Math. 1, Kinokuniya, Tokyo, 1983, pp. 55-68. MR 715646 (84k:14007)
  • [So2] -, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. MR 0429918 (55:2927)
  • [Š1] V. V. Šokurov, Holomorphic differential forms of higher degree on Kuga's modular varieties, Math. USSR Sb. 30 (1976), 1199-142.
  • [Š2] -, The study of the homology of Kuga varieties, Math USSR Izv. 16 (1981), 399-418.
  • [T] J. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-110. MR 0225778 (37:1371)
  • [V] J.-L. Verdier, Sur les intgrales attachées aux formes automorphes (d'après Goro Shimura), Séminaire Bourbaki (1961).
  • [W] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946. MR 1488158 (98k:01049)
  • [Wh] G. W. Whitehead, Elements of homotopy theory, Springer, New York, 1978. MR 516508 (80b:55001)
  • [Z] S. Zucker, Hodge theory with degenerating coefficients: $ {L_2}$-cohomology in the Poincaré metric, Ann. of Math. 109 (1979), 415-476. MR 534758 (81a:14002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14C30, 14C25, 14F20, 14K30

Retrieve articles in all journals with MSC: 14C30, 14C25, 14F20, 14K30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1097167-2
Keywords: Kuga variety, elliptic curve, Hodge conjecture, generalized Hodge conjecture, Abel-Jacobi map, intermediate Jacobian, Tate conjecture, cusp forms
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society