Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Algebraic cycles and the Hodge structure of a Kuga fiber variety

Author: B. Brent Gordon
Journal: Trans. Amer. Math. Soc. 336 (1993), 933-947
MSC: Primary 14C30; Secondary 14C25, 14F20, 14K30
MathSciNet review: 1097167
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tilde A$ denote a smooth compactification of the $ k$-fold fiber product of the universal family $ {A^1} \to M$ of elliptic curves with level $ N$ structure. The purpose of this paper is to completely describe the algebraic cycles in and the Hodge structure of the Betti cohomology $ {H^{\ast} }(\tilde A,\mathbb{Q})$ of $ \tilde A$ , for by doing so we are able (a) to verify both the usual and generalized Hodge conjectures for $ \tilde A$ ; (b) to describe both the kernel and the image of the Abel-Jacobi map from algebraic cycles algebraically equivalent to zero (modulo rational equivalence) into the Griffiths intermediate Jacobian; and (c) to verify Tate's conjecture concerning the algebraic cycles in the étale cohomology $ H_{{\text{et}}}^{\ast} (\tilde A \otimes \bar{\mathbb{Q}},{\mathbb{Q}_l})$. The methods used lead also to a complete description of the Hodge structure of the Betti cohomology $ {H^{\ast} }({E^k},\mathbb{Q})$ of the $ k$-fold product of an elliptic curve $ E$ without complex multiplication, and a verification of the generalized Hodge conjecture for $ {E^k}$ .

References [Enhancements On Off] (What's this?)

  • [AMRT] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Math. Sci. Press, Brookline, Mass., 1975. Lie Groups: History, Frontiers and Applications, Vol. IV. MR 0457437
  • [BO] Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 0412191
  • [C] C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), no. 2, 215–290. MR 0444662
  • [D1] P. Deligne, Formes modulaires et représentations $ l$-adiques, Séminaire Bourbaki, Lecture Notes in Math., vol 179, Springer, New York, 1971, pp. 139-172.
  • [D2] Pierre Deligne, Travaux de Shimura, Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Springer, Berlin, 1971, pp. 123–165. Lecture Notes in Math., Vol. 244 (French). MR 0498581
  • [D3] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 0498551
  • [D4] -, Hodge cycles on abelian varieties (Notes by J. S. Milne), Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer, New York, 1982, pp. 9-100.
  • [F] Gerd Faltings, 𝑝-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), no. 1, 255–299. MR 924705, 10.1090/S0894-0347-1988-0924705-1
  • [FM] J.-M. Fontaine and W. Messing, $ p$-adic periods and $ p$-adic étale cohomology, preprint.
  • [Go1] B. Brent Gordon, Algebraically defined subspaces in the cohomology of a Kuga fiber variety, Pacific J. Math. 131 (1988), no. 2, 261–276. MR 922218
  • [Go2] B. Brent Gordon, Topological and algebraic cycles in Kuga-Shimura varieties, Math. Ann. 279 (1988), no. 3, 395–402. MR 922423, 10.1007/BF01456276
  • [Gf1] Phillip A. Griffiths, Some results on algebraic cycles on algebraic manifolds, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 93–191. MR 0257092
  • [Gf2] Phillip A. Griffiths, Some transcendental methods in the study of algebraic cycles, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Springer, Berlin, 1971, pp. 1–46. Lecture Notes in Math., Vol. 185. MR 0309937
  • [GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [Gr1] A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969), 299–303. MR 0252404
  • [Gr2] Alexander Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 88–188 (French). MR 244271
  • [Ha] Rita Hall, On the cohomology of Kuga’s fiber variety, Pacific J. Math. 75 (1978), no. 2, 411–422. MR 506200
  • [HK] Rita Hall and Michio Kuga, Algebraic cycles in a fiber variety, Sci. Papers College Gen. Ed. Univ. Tokyo 25 (1975), no. 1, 1–6. MR 0469919
  • [H] W. V. D. Hodge, The topological invariants of algebraic varieties, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R. I., 1952, pp. 182–192. MR 0046075
  • [J] U. Jannsen, Mixed motives, preprint.
  • [Ko] K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111–152. MR 0132556
  • [K1] M. Kuga, Fibre varieties over a symmetric space whose fibres are abelian varieties, vols. I and II, Univ. of Chicago, Chicago, Ill., 1964.
  • [K2] -, Fibre varieties over symmetric space whose fibres are abelian varieties, Proc. of the U.S.-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, Nippon Hyoronsha, 1966, pp. 72-81.
  • [K3] Michio Kuga, Algebraic cycles in gtfabv, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 1, 13–29. MR 657869
  • [KL] Michio Kuga and J. V. Leahy, Shimura’s abelian varieties as Weil’s higher Jacobian varieties, J. Fac. Sci. Univ. Tokyo Sect. I 16 (1969), 229–253. MR 0263832
  • [KS] Michio Kuga and Goro Shimura, On the zeta function of a fibre variety whose fibres are abelian varieties, Ann. of Math. (2) 82 (1965), 478–539. MR 0184942
  • [L] Alain Lascoux, Syzygies des variétés déterminantales, Adv. in Math. 30 (1978), no. 3, 202–237 (French). MR 520233, 10.1016/0001-8708(78)90037-3
  • [Ml] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
  • [Mm1] David Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 347–351. MR 0206003
  • [Mm2] D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties”, Math. Ann. 181 (1969), 345–351. MR 0248146
  • [Mr] J. P. Murre, Abel-Jacobi equivalence versus incidence equivalence for algebraic cycles of codimension two, Topology 24 (1985), no. 3, 361–367. MR 815486, 10.1016/0040-9383(85)90008-4
  • [Mt1] V. Kumar Murty, Algebraic cycles on abelian varieties, Duke Math. J. 50 (1983), no. 2, 487–504. MR 705036, 10.1215/S0012-7094-83-05021-4
  • [Mt2] V. Kumar Murty, Exceptional Hodge classes on certain abelian varieties, Math. Ann. 268 (1984), no. 2, 197–206. MR 744607, 10.1007/BF01456085
  • [Sb] Bruno Schoeneberg, Elliptic modular functions: an introduction, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt; Die Grundlehren der mathematischen Wissenschaften, Band 203. MR 0412107
  • [Sl] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430. MR 1047142, 10.1007/BF01231194
  • [Sm1] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
  • [Sm2] Goro Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291–311 (French). MR 0120372
  • [Sm3] Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144–222. MR 0257031
  • [So1] Tetsuji Shioda, What is known about the Hodge conjecture?, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam-New York, 1983, pp. 55–68. MR 715646
  • [So2] Tetsuji Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59. MR 0429918
  • [Š1] V. V. Šokurov, Holomorphic differential forms of higher degree on Kuga's modular varieties, Math. USSR Sb. 30 (1976), 1199-142.
  • [Š2] -, The study of the homology of Kuga varieties, Math USSR Izv. 16 (1981), 399-418.
  • [T] John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
  • [V] J.-L. Verdier, Sur les intgrales attachées aux formes automorphes (d'après Goro Shimura), Séminaire Bourbaki (1961).
  • [W] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
  • [Wh] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
  • [Z] Steven Zucker, Hodge theory with degenerating coefficients. 𝐿₂ cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415–476. MR 534758, 10.2307/1971221

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14C30, 14C25, 14F20, 14K30

Retrieve articles in all journals with MSC: 14C30, 14C25, 14F20, 14K30

Additional Information

Keywords: Kuga variety, elliptic curve, Hodge conjecture, generalized Hodge conjecture, Abel-Jacobi map, intermediate Jacobian, Tate conjecture, cusp forms
Article copyright: © Copyright 1993 American Mathematical Society