MOUNTAIN IMPASSE THEOREM AND
SPECTRUM OF SEMILINEAR ELLIPTIC PROBLEMS

KYRIL TINTAREV

Abstract. This paper studies a minimax problem for functionals in Hilbert space in the form of $G(u) = \frac{1}{2} \rho \|u\|^2 - g(u)$, where $g(u)$ is Fréchet differentiable with weakly continuous derivative. If G has a "mountain pass geometry" it does not necessarily have a critical point. Such a case is called, in this paper, a "mountain impasse". This paper states that in a case of mountain impasse, there exists a sequence $u_j \in H$ such that

$$g'(u_j) = \rho_j u_j, \quad \rho_j \to \rho, \quad \|u_j\| \to \infty,$$

and $G(u_j)$ approximates the minimax value from above. If

$$\gamma(t) = \sup_{\|u\|^2 = t} g(u)$$

and

$$J_0 = \left(2 \inf_{t_2 > t_1 > 0} \frac{\gamma(t_2) - \gamma(t_1)}{t_2 - t_1}, 2 \sup_{t_2 > t_1 > 0} \frac{\gamma(t_2) - \gamma(t_1)}{t_2 - t_1} \right),$$

then $g'(u) = \rho u$ has a nonzero solution u for a dense subset of $\rho \in J_0$.

1. FORMULATION OF RESULTS

If g is a C^1-functional on a Hilbert space and u is a critical point of g on a sphere, then $g'(u) = \rho u$, $\rho \in \mathbb{R}$. This approach to semilinear elliptic equations has been known for decades (cf. [1, 2]), but a question of the range of ρ has remained open. A recent series of papers (cf. [7] and references therein) provides an answer that can be summarized as follows.

Let H be an infinite dimensional Hilbert space and let $g : H \to \mathbb{R}$ be a C^1-map (with respect to Fréchet differentiation). Let H_w be the space H supplied with the weak topology. Assume that

(1.1) $g \in C(H_w \to \mathbb{R}),$

(1.2) $g' \in C(H_w \to H).$

(By continuity we always mean local contiuity without uniform bounds.)

In applications to semilinear elliptic problems condition (1.1)–(1.2) correspond to the subcritical growth of the right-hand side.

Consider the following function

(1.3) $\gamma(t) = \sup_{\|u\|^2 = t} g(u).$

Received by the editors December 3, 1990.

Theorem 1.1. Assume (1.1), (1.2). The function (1.3) is continuous, nondecreasing and possesses left- and right-hand derivatives \(\gamma'_-(t) \leq \gamma'_+(t) \). For every \(t > 0 \) such that \(\gamma'_-(t) \neq 0 \) (\(\gamma'_+(t) \neq 0 \)) there exist \(u_+ \in H \) (\(u_- \in H \)) such that

\[
\|u_\pm\|^2 = t, \quad g(u_\pm) = \gamma(t),
\]

and

\[
2\gamma'_\pm(t)u_\pm = g'(u_\pm).
\]

In other words, the spectrum \(\{\rho\} \) of the problem

\[
\rho u = g'(u), \quad u \in H \setminus \{0\},
\]

contains all the tangent slopes from the graph of \(2\gamma(t) \). If \(\gamma(t) \) had a continuous derivative, then (1.6) would be solvable for all

\[
\rho \in J_0 = \left(\inf_{r>0} 2\gamma'_-(t), \sup_{r>0} 2\gamma'_+(t) \right).
\]

However, \(\gamma(t) \) is not necessarily differentiable (cf. [7]). On the other hand, [7] gives sufficient conditions for (1.6) to be solvable with \(\rho \in J_0 \). The argument of [7] involves a mountain pass lemma with an additional condition of the (PS)-type which we avoid here.

The main result of this paper is

Theorem 1.2. Let \(g \) satisfy (1.1), (1.2). Then for every \(\rho \in J_0 \) such that (1.6) is not solvable there is a sequence \(\rho_j \in J_0 \) and a sequence \(u_j \in H \), such that

\[
\rho_j > \rho, \quad \rho_j \to \rho, \quad \rho_j u_j = g'(u_j), \quad \|u_j\| \to \infty.
\]

Theorem 1.2 means that the set of eigenvalues of (1.6) is dense in \(J_0 \) and that a missing eigenvalue always can be approximated by a “blow up” sequence. Theorem 1.2 reflects a technical situation that might be called a mountain impasse. This is the case when a functional has a standard mountain pass geometry but no critical points. This situation is handled by Theorem 2.1 which is a refinement of Schechter's Mountain Pass Alternative [4]. Section 2 contains the proof of Theorem 2.1. Section 3 discusses applications to semilinear elliptic problems. The tangible benefit of Theorem 1.2 is not a mountain impasse itself (which to our best understanding was never observed in elliptic problems), but a relation between solvability and priori bounds, widely used before in the topological approach. We will discuss this in more detail at the end of §3.

2. Mountain impasse theorem

Let

\[
G \in C^1(H \to \mathbb{R}), \quad G' \in C(H_w \to H_w)
\]

be a weakly lower semicontinuous functional with a mountain pass geometry, as follows. Let \(\delta > 0 \), \(t_0 > 0 \), \(e \in H \), \(\|e\|^2 > t_0 \) and assume that

\[
G(u) \geq 2\delta > 0 \text{ for } \|u\|^2 = t_0, \text{ while } G(0), G(e) \leq 0.
\]

We assume that \(G \) has no critical points:

\[
G'(u) \neq 0 \text{ when } G(u) \geq \delta.
\]
The following condition will also be required:

\[
\text{if } u_k \overset{w}{\to} u_0, \limsup (G'(u_k), u_k) \leq 0 \text{ and } \]

\[
G'(u_k) - (G'(u_k), u_k)u_k/\|u_k\|^2 \to 0, \text{ then } u_k \to u_0 \text{ in } H.
\] (2.4)

We should note that this condition of a weak (PS) type becomes a mere weak continuity condition when \(G \) is as in (3.2). Let

\[
S_t = \{ u \in H : \|u\|^2 = t \}, \quad B_t = \{ u \in H : \|u\|^2 \leq t \}.
\] (2.5)

For every \(t > \|\varepsilon\|^2 \) we define \(\Phi(t) \) as a collection of paths \(\varphi \in C([0, 1] \to B_t) \) such that

\[
\varphi(0) = 0, \quad \varphi(1) = \varepsilon.
\] (2.6)

Let

\[
\kappa(t) = \inf_{\varphi \in \Phi(t)} \max_{s \in [0, 1]} G(\varphi(s)).
\] (2.7)

From (2.2) it follows that

\[
\kappa(t) \geq 2\delta \quad \text{when } t > \|\varepsilon\|^2.
\] (2.8)

Theorem 2.1. Assume (2.1)–(2.4). There exist a sequence \(\alpha_j > 0 \), \(\alpha_j \to 0 \), and a sequence \(u_j \in H \setminus \{0\} \), \(\|u_j\| \to \infty \), such that

\[
G'(u_j) = -\alpha_j u_j,
\] (2.9)

\[
G(u_j) \geq \delta.
\] (2.10)

The proof of Theorem 2.1 will be given as a sequence of lemmas. Relations (2.1)–(2.4) are assumed throughout §2. The following statement can be found in [5].

Lemma 2.2. Let \(Z(u) \in C(B_t \to H) \) and \(Z(u) \neq 0 \) on \(B_t \setminus \{0\} \). Assume that there is a closed subset \(Q \) of \(B_t \setminus \{0\} \) and a \(\theta < 1 \) such that

\[
(Z(u), u) + \theta \|Z(u)\| \|u\| \geq 0, \quad u \in Q.
\] (2.11)

Then for each \(\alpha < (1 - \theta) \) there is a locally Lipschitz mapping \(Y(u) : B_t \setminus \{0\} \to H \) such that

\[
(Z(u), Y(u)) \geq \alpha \|Z(u)\|, \quad u \in B_t \setminus \{0\},
\] (2.12)

\[
(Y(u), u) > 0, \quad u \in Q,
\] (2.13)

and

\[
\|Y(u)\| \leq 1, \quad u \in B_t \setminus \{0\}.
\] (2.14)

Lemma 2.3. Assume that there is an \(\varepsilon > 0 \), such that

\[
G'(u) = \beta u
\] (2.15)

has no solution \(u \) when

\[
u \in H_\delta = \{ u \in H : G(u) \geq \delta \},
\] (2.16)

and \(\beta \in [-2\varepsilon, 0] \). Then for any \(t > \|\varepsilon\|^2 \) there exist a \(\theta < 1 \) such that

\[
(G'(u), u) + \theta \|G'(u)\| \|u\| \leq 0, \quad u \in H_\delta \cap B_t \Rightarrow (G'(u), u) \leq -\varepsilon \|u\|^2.
\] (2.17)
Proof. Assume the opposite, namely that there is a sequence \(u_j \in H_\delta \cap B_t \) and a sequence \(\theta_j \to 1 \), \(\theta_j < 1 \), such that

\[
(2.18) \quad (G'(u_j), u_j) + \theta_j \|G'(u_j)\| \|u_j\| \leq 0,
\]

\[
(2.19) \quad \beta(u_j) := (G'(u_j), u_j)/\|u_j\|^2 \in [-\varepsilon, 0].
\]

Let \(u_i \) be a renamed weakly convergent subsequence, and \(u_0 = w\)-lim \(u_j \). By (2.1) \(G'(u_j) \rightharpoonup G'(u_0) \) and therefore \(G'(u_j) \) is bounded in norm. Then (2.18) easily implies

\[
(2.20) \quad G'(u_j) - \beta(u_j)u_j \to 0.
\]

Then by (2.4) \(u_j \to u_0 \) in \(H_\delta \), \(G(u_0) \geq \delta \), and

\[
(2.21) \quad G'(u_0) = \beta(u_0)u_0, \quad u_0 \in H_\delta \cap B_t.
\]

By (2.19) \(\beta(u_0) \in [-\varepsilon, 0] \) which contradicts assumptions of the lemma. □

Lemma 2.4. There is a number \(r(t) > 0 \) and a number \(\mu > 0 \) independent of \(t \) such that

\[
(2.22) \quad \|G'(u)\| \geq r(t), \quad u \in H_\delta \cap B_t,
\]

\[
(2.23) \quad \|u\| \geq 2\mu, \quad u \in H_\delta \cap B_t.
\]

Proof. (1) Assume that (2.22) fails. Then there is a sequence \(u_j \rightharpoonup u_0 \in B_t \), such that \(G'(u_j) \to 0 \). Then by (2.4) \(u_j \to u_0 \) in \(H_\delta \), \(u_0 \in H_\delta \cap B_t \), and \(G'(u_0) = 0 \), which contradicts (2.2).

(2) Consider the lower bound of \(\|u\| \) on \(H_\delta \). If \(u_j \to 0 \) on \(H_\delta \), then \(G(u_j) \to G(0) \leq 0 \) by (2.2), which contradicts the assumption on \(u_j \). □

Lemma 2.5. Under assumptions of Lemma 2.3,

\[
(2.24) \quad D^+_t \kappa(t) \leq -\frac{1}{2} \varepsilon \mu^2 / t, \quad t > \|e\|^2,
\]

with \(\mu \) as in (2.23).

Proof. (1) Let us define the following sets:

\[
Q_0 = \{ u \in B_{2t} : |G(u) - \kappa(t)| \leq \delta / 2 \},
\]

\[
\tilde{Q}_0 = \{ u \in B_{2t} : |G(u) - \kappa(t)| \geq \delta \},
\]

\[
Q_1 = \left\{ u \in B_{2t} : \frac{(G'(u), u)}{\|G'(u)\| \|u\|} \leq -1 + \eta \right\},
\]

\[
Q_2 = \left\{ u \in B_{2t} : \frac{(G'(u)u)}{\|G'(u)\| \|u\|} \geq -1 + 2\eta \right\},
\]

where \(t > \|e\|^2 \), \(0 < 2\eta < 1 - \theta \) with \(\theta \) as in Lemma 2.3 applied to the ball \(B_{2t} \). Let

\[
\chi_0(u) = d(u, \tilde{Q}_0)/(d(u, Q_0) + d(u, \tilde{Q}_0)),
\]

\[
\chi_1(u) = d(u, Q_2)/(d(u, Q_1) + d(u, Q_2)),
\]

\[
\chi_2(u) = 1 - \chi_1(u), \quad u \in H.
\]

The functions (2.26) are Lipschitz continuous, their range is \([0, 1]\), they equal one on \(Q_0, Q_1, Q_2 \), respectively, and vanish, respectively, on \(\tilde{Q}_0, Q_2 \) and \(Q_1 \).
We now wish to apply Lemma 2.2 for B_{2t} with $Z = G'$, $Q = \text{supp } \chi_1 \cap \text{supp } \chi_0 = B_{2t}\setminus (\tilde{Q}_0 \cup Q_2)$ and θ as in Lemma 2.3. Consider the initial value problem

\begin{align}
\frac{d\sigma}{dh} &= \chi_0(\sigma)\chi_1(\sigma)\sigma - N\chi_0(\sigma)\chi_2(\sigma)Y(\sigma)/\|Y(\sigma)\|, \\
\sigma(h)|_{h=0} &= \varphi, \quad \varphi \in H, \quad N = 2et/(1 - 2\eta)r.
\end{align}

The right-hand side in (2.27) is locally Lipschitz continuous in σ and thus the problem has a unique C^1-solution σ defined for all h. Note that if $\varphi = 0$ or $\varphi = e$, then so is σ for all h.

(2) Let $\varphi_j \in \Phi(t)$ be a minimizing sequence for (2.7) and σ_j be correspondent solutions of (2.27)-(2.28). Then for $t_1 \in (t, 2t)$,

\begin{align}
\kappa(t_1) &\leq \sup_{s \in [0, 1]} G(\sigma_j(h; s))
\end{align}

as long as

\begin{align}
\|\sigma_j(h; s)\|^2 < t_1 \quad \text{for all } s \in [0, 1].
\end{align}

Let us establish a bound on h that implies (2.30). By (2.27)

\begin{align}
\frac{d}{dh}\|\sigma_j\|^2 &= 2\chi_0\chi_1\|\sigma_j\|^2 - 2\chi_0\chi_2 N(Y(\sigma_j), \sigma_j)\|Y(\sigma_j)\|^{-1} \leq 2\|\sigma_j\|^2.
\end{align}

Therefore,

\begin{align}
\|\sigma_j(h; s)\|^2 &\leq te^{2h}.
\end{align}

Consequently, assuming

\begin{align}
0 \leq h \leq \frac{1}{2} \ln(t_1/t)
\end{align}

we obtain (2.30). In the further course of the proof h will be subject to additional bounds from above.

(3) Let us estimate the derivative of $G(\sigma)$.

\begin{align}
\frac{d}{dh}G(\sigma_j) &= \chi_0\chi_1(G'(\sigma_j), \sigma_j) - N\chi_0\chi_2(G'(\sigma_j), Y(\sigma_j))/\|Y(\sigma_j)\|.
\end{align}

By Lemma 2.2 as already applied,

\begin{align}
(G'(\sigma), Y(\sigma))/\|Y(\sigma)\| \geq (1 - 2\eta)\|G'(\sigma)\| \quad \text{when } \sigma \in \text{supp } \chi_0\chi_2.
\end{align}

By Lemma 2.3

\begin{align}
(G'(\sigma_j), \sigma_j) &\leq -e\|\sigma_j\|^2 \quad \text{when } \sigma \in \text{supp } \chi_0\chi_1.
\end{align}

Then (2.34) yields

\begin{align}
\frac{d}{dh}G(\sigma_j) &\leq -e\chi_0\chi_1\|\sigma_j\|^2 - (1 - 2\eta)N\chi_0\chi_2\|G'(\sigma_j)\| \\
&\leq -e\chi_0\chi_1\|\sigma_j\|^2 - (1 - 2\eta)N\chi_0\chi_2 r\|\sigma_j\|^2/2t \\
&\leq -e\chi_0(\chi_1 + \chi_2)\|\sigma_j\|^2 = -e\chi_0(\sigma_j)\|\sigma_j\|^2.
\end{align}

(4) Consider the following sets of $s \in [0, 1]$. Let

\begin{align}
I_1 = \{s \in [0, 1]: |G(\varphi(s)) - \kappa(t)| \geq \delta/2\}.
\end{align}
For \(j \) large enough the inequality in (2.38) holds only if \(G(\varphi_j(s)) \leq \kappa(t) - \delta/2 \), since \(\varphi_j \) is a minimizing sequence and \(\kappa(t) \) is approximated by the maximal values of \(G(\varphi_j(s)) \). By (2.37), \(G(\sigma_j(h; s)) \leq \kappa(t) - \delta/2 \) for \(s \in I_1 \). Now let \(I_2 \) be a subset of \([0, 1]\) \(\backslash I_1 \), such that \(\sigma_j(h; s) \in Q_0 \) for all \(h \in [0, h_1] \), \(h_1 := \frac{1}{2} \ln(t_1/t) \), and \(I_3 = [0, 1] \backslash (I_1 \cup I_2) \). On \(I_2 \) (2.37) implies

\[
\frac{d}{dh} G(\sigma_j) \leq -\varepsilon \|\sigma_j\|^2.
\]

By (2.31)

\[
\frac{d}{dh} \|\sigma_j\|^2 \geq -2N\|\sigma_j\|
\]

and consequently,

\[
\|\sigma_j\| \geq \|\varphi_j\| - Nh, \quad s \in I_2.
\]

Since \(\varphi_j(s) \in H_\delta \) when \(s \in I_2 \), Lemma 2.4 implies

\[
\|\sigma_j\| \geq 2\mu - Nh
\]

and assuming

\[
h \leq \mu/N,
\]

one has

\[
\|\sigma_j\| \geq \mu \quad \text{for} \ s \in I_2,
\]

and therefore,

\[
\frac{d}{dh} G(\sigma_j) \leq -\varepsilon \mu^2, \quad s \in I_2.
\]

Finally, if \(s \in I_3 \), let \(h_0 \in [0, h_1] \) be a maximal \(h \), such that \(\sigma_j(h; s) \in Q_0 \) for \(h \in [0, h_0] \). Then

\[
G(\sigma_j(h; s)) \leq G(\sigma_j(h_0, s)) = \kappa(t) - \delta/2, \quad s \in I_3.
\]

Combining (2.38), (2.45), and (2.44), one has from (2.29) that

\[
\kappa(t_1) \leq \max_{s \in [0, 1]} G(\sigma_j(h; s))
\]

\[
\leq \max \left\{ \kappa(t) - \delta/2, \max_{s \in I_1} G(\varphi_j) - \varepsilon \mu^2 h \right\}
\]

\[
\leq \max \{ \kappa(t) - \delta/2, m_j - \varepsilon \mu^2 h \},
\]

where \(m_j = \max_{s \in [0, 1]} G(\varphi_j) \), \(m_j \to \kappa(t) \). With \(j \) large enough and an additional upper bound on \(h \)

\[
h < \delta / 6\varepsilon \mu^2,
\]

one has

\[
\kappa(t_1) \leq \kappa(t) - \varepsilon \mu^2 h.
\]

Relation (2.49) is valid only as far as \(h \) satisfies restrictions (2.48), (2.43), and (2.33). Three of them can be reduced to (2.33) when

\[
t_1 < \min\{2t, te^{2h_2}, te^{2h_3}\}, \quad \text{where} \ h_2 = \frac{\mu}{N} \text{ and } h_3 = \frac{\delta}{6\varepsilon \mu^2}.
\]
Then (2.49) with $h = \frac{1}{2} \ln(t_{1}/t)$ immediately implies (2.24).

Proof of Theorem 2.1. It is already proved in [4] that for any $t > \|e\|^2$ there is $u \in H_{\delta} \cap B_t$ and $\alpha > 0$ such that

\begin{equation}
G'(u) = -\alpha u.
\end{equation}

Assume that there are no sequences $\alpha_j > 0$, $u_j \in H_{\delta}$ satisfying (2.51) and such that $\alpha_j \to 0$. Then the conditions of Lemma 2.3 are satisfied with some $\varepsilon > 0$ and by Lemma 2.5

\begin{equation}
\limsup_{t \to \infty} \kappa(t) \to -\infty,
\end{equation}

which contradicts (2.8). Therefore $\{\alpha_j\}$ necessarily has a subsequence with zero limit. Assume now that $\{u_j\}$ has a bounded subsequence. Then there is a weakly convergent renamed subsequence $u_j \rightharpoonup u_0$ and

\begin{equation}
G'(u_j) \to 0.
\end{equation}

Then by (2.4) $u_j \to u_0$, $G(u_0) \geq \delta$, and $G'(u_0) = 0$, which contradicts (2.3). Thus $\|u_j\| \to \infty$.

\section{Applications to Elliptic Problems}

We wish to show now that Theorem 2.1 implies Theorem 1.2. Our argument is somewhat repetitious of [7] and we omit details.

1. Let

\begin{equation}
\rho_0 \in \mathcal{J}_0,
\end{equation}

and

\begin{equation}
G(u) = \frac{1}{2} \rho_0 \|u\|^2 - g(u) + c, \quad c \leq g(0).
\end{equation}

It is easy to see that if g satisfies (1.1) and (1.2), then G satisfies (2.1).

2. Let us verify (2.2). Let

\begin{equation}
\Gamma(t) = \frac{1}{2} \rho_0 t - \gamma(t) + c.
\end{equation}

If the function $\Gamma(t)$ has a point of a local minimum on $(0, \infty)$, then G has a nonzero critical point (cf. [6] or [7]), which contradicts the assumptions. If the function $\Gamma(t)$ is monotone, then by Theorem 1.2 all the derivatives of $\gamma(t)$ must be either greater or smaller than $\frac{1}{2} \rho_0$ which contradicts (3.1).

The remaining possibility is that $\Gamma(t)$ has a global maximum at $t = t_0 \in (0, \infty)$. Then (2.2) is satisfied with the following choices. Let $t_1 > t_0$ and let e be an element of a maximizing sequence for g on S_{t_1}, such that

\begin{equation}
\frac{1}{2} \rho_0 t_1 - g(e) + c < M + c,
\end{equation}

where

\begin{equation}
M = \frac{1}{2} \rho_0 t_0 - \gamma(t_0).
\end{equation}

Finally, set

\begin{equation}
\delta = \frac{1}{2} \min(M - \frac{1}{2} \rho_0 \|e\|^2 + g(e), M + g(0))
\end{equation}

and

\begin{equation}
c = 2\delta - M.
\end{equation}
If one assumes that (1.6) has no solution with \(p = p_0 \), then \(G \) satisfies (2.3). Now note that (2.4) follows from (1.2) and one can apply Theorem 2.1. \(\square \)

We discuss here only the applications to the problem

\[
-\rho \Delta u = f(u), \quad u \in H_0^1(\Omega) \setminus \{0\},
\]

where \(\Omega \subset \mathbb{R}^n \), \(n \geq 3 \), is an open bounded set, \(f : \mathbb{R} \to \mathbb{R} \) is continuous and subcritical at infinity, i.e.,

\[
f(s) = o(|s|^{(n+2)/(n-2)}) \quad \text{as} \quad s \to \infty.
\]

Let

\[
F(s) = \int_0^s f(\sigma) \, d\sigma,
\]

\[
g(u) = \int_\Omega F(u) \, dx.
\]

It is well known that \(g \) satisfies (1.1) and (1.2) on \(H_0^1(\Omega) \). Equation (3.8) is an equation for a critical point of \(g \) on

\[
S_t = \left\{ u \in H_0^1(\Omega) : \int_\Omega |
abla u|^2 = t \right\}.
\]

Theorem 1.2 then implies that (3.8) is solvable for a dense subset of \(\rho \in J_0 \). The interval \(J_0 \) is defined here as an open interval between the lower and upper bound of the slopes on the graph of

\[
2\gamma(t) = \sup_{u \in S_t} 2 \int_\Omega F(u) \, dx.
\]

One can reverse Theorem 1.2 and state the solvability of (1.6) for all \(\rho \in J_0 \) with an additional condition of an a priori bound on a Hilbert norm of \(u \).

Theorem 3.1. Assume (1.1), (1.2), and (1.8). If there is a \(\nu > 0 \) and a \(c > 0 \), such that for any \(u \) satisfying (1.6) with \(|\rho - \rho_0| < \nu \),

\[
||u|| \leq c,
\]

then (1.6) has a solution with \(\rho = \rho_0 \).

This statement is an elementary corollary of Theorem 1.2.

There are several important results which establish a priori bounds in \(L^\infty \) motivated by the topological approach to (3.8) (cf. [3] and references therein). The following statement uses an argument from [3].

Corollary 3.2. Let \(n \geq 3 \), \(\Omega \) be starshaped, \(f \geq 0 \), and let

\[
\frac{F(s)}{s^{\sigma}} \quad \text{be a decreasing function near} \quad s = +\infty \quad \text{with some} \quad \sigma < \frac{2n}{n-2}.
\]

Then the problem (3.8) satisfies the condition (3.14) and consequently is solvable for all \(\rho \in J_0 \).

Proof. Since \(\Omega \) is starshaped, a well-known Pohozaev-Rellich identity (resulting from multiplication of (3.8) by \((x \cdot \nabla)u \)) provides

\[
\rho ||u||^2 \leq \frac{2n}{n-2} \int F(u).
\]
At the same time, multiplication of (3.8) by \(u \) gives

\begin{equation}
\rho \| u \|^2 = \int f(u)u.
\end{equation}

From (3.15) and since the problem might have only positive solutions, one has

\begin{equation}
\int F(u) \leq \sigma \int f(u)u + c, \quad c \in \mathbb{R}.
\end{equation}

Then (3.16)–(3.18) immediately provide (3.14). \(\square \)

This corollary includes cases of \(f \) with sub- (or super-)linear behavior both at 0 and at \(\infty \).

References

Department of Mathematics, University of California, Irvine, California 92717

E-mail address: tintarev@math.uci.edu