Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Supercuspidal representations and the theta correspondence. II. $ {\rm SL}(2)$ and the anisotropic $ {\rm O}(3)$

Author: David Manderscheid
Journal: Trans. Amer. Math. Soc. 336 (1993), 805-816
MSC: Primary 22E50; Secondary 11F70
MathSciNet review: 1099354
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A parametrization is given of the local theta correspondence attached to the reductive dual pair $ ({\text{SL}}_2(F),\;{\text{O}}(F))$ where $ F$ is a nonarchimedean local field of odd residual characteristic and $ {\text{O}}$ is the orthogonal group of a ternary quadratic form which is anisotropic over $ F$. The parametrization is in terms of inducing data. Various lattice models of the oscillator representation are used.

References [Enhancements On Off] (What's this?)

  • [C] L. Corwin, Representations of division algebras over local fields, Adv. in Math. 13 (1974), 259-267. MR 0347780 (50:281)
  • [D] J. Diendonné, La géométrie des groupes classiques, 2nd ed., Springer-Verlag, Berlin, 1963.
  • [M1] D. Manderscheid, Supercuspidal representations and the theta correspondence, J. Algebra 151 (1992), 375-408. MR 1184041 (94j:22019a)
  • [M2] -, Supercuspidal duality for the two-fold cover of $ {\text{SL}}_2$ and the split $ {\mathcal{O}_3}$, Amer. J. Math. 107 (1985), 1305-1323. MR 815764 (87e:22040)
  • [Mo1] L. Morris, Some tamely ramified supercuspidal representations of symplectic groups, Proc. London Math. Soc. 63 (1991), 519-551. MR 1127148 (92i:22017)
  • [Mo2] -, Tamely ramified supercuspidal representations of classical groups. I: filtrations, Ann. Sci. Ecole Norm. Sup. 24 (1991), 705-738. MR 1142907 (93c:22032)
  • [R] I. Reiner, Maximal orders, Academic Press, New York, 1975. MR 0393100 (52:13910)
  • [RS] S. Rallis and G. Schiffman, Représentations supercuspidales du group métaplectique, J. Math. Kyoto Univ. 17 (1977), 567-603. MR 0498395 (58:16523)
  • [T] S. Tanaka, Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka J. Math 4 (1967), 65-84. MR 0219635 (36:2714)
  • [W] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219-307. MR 1103429 (92g:11054)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E50, 11F70

Retrieve articles in all journals with MSC: 22E50, 11F70

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society