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GROUPS OF DUALITIES

GEORGI D. DIMOV AND WALTER THOLEN

Abstract. For arbitrary categories si and 38 , the "set" of isomorphism-

classes of dualities between si and 3S carries a natural group structure. In

case si and 3ê admit faithful representable functors to Set, this structure

can often be described quite concretely in terms of "schizophrenic objects" (in

the sense of Johnstone's book on "Stone Spaces"). The general theory provided

here allows for a concrete computation of that group in case si = í% = '£ is

the category of all compact and all discrete abelian groups: it is the uncountable

group of algebraic automorphisms of the circle R/Z , modulo its subgroup %i

of continuous automorphisms.

Introduction

There is such a big variety of articles, monographs and chapters in books

on dualities that it seems doubtful that anything substantially new could be

said on the topic, in particular in the context of ordinary Set-based categories

which are considered in this paper. In fact, this paper lives very much on Law-

vere's idea of describing dualities in terms of objects living in two categories, an

idea which has inspired others to invent rather picturesque phrases: Isbell talks

about objects keeping "summer and winter homes" (cf. Bergman [2]); H. Sim-

mons suggested "schizophrenic object", a name used in Johnstone's book [14]

and in this paper. However, a first characterization of contravariant adjunc-

tions and dualities in terms of schizophrenic objects on a sufficiently abstract

level only appeared in this paper's predecessor [6]. The objective of this paper

is to present this characterization in a more complete fashion, to apply it in
such a way that the group structure of the family of isomorphism classes of

all dualities between two given categories becomes concretely accessible, and

finally to use this description to prove a result announced in [6] (but probably

already envisaged by Prodanov; there is a crucial remark in his unpublished

paper [20]) on the group of all (Pontryagin-type) dualities of the category £P of

all compact and all discrete Abelian groups. This is, admittedly, a bad category,

but one with an interesting group of dualities, and this fact in turn we see as an

argument for developing a theory on dualities without restrictive assumptions

on the categories involved.

In a short introductory section we describe the "group" DUAL(j/ ,ZZS)/ =

we are interested in for abstract categories ssf and £$, before we then turn
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902 G. D. DIMOV AND WALTER THOLEN

to the setting kept throughout the paper, that sé and ¿ß come equipped with

Set-functors U and V respectively which need not even be right adjoints. In

fact, without any conditions on these data, natural contravariant adjunctions

(S:38^sé, T: sé -» SB), i.e. adjoint pairs (S, T) with VT = sé (-, Ä),

US = 3§{-, B) such that the units and co-units are given by (/-initial and V-

initial families (of evaluation maps) respectively, are described in terms of Set-

bijections t: UA —► VB (= schizophrenic objects), in such a way that it is clear

how to construct adjunctions from a schizophrenic object (cf. Theorem 2.5). If

U and V are conservative (= reflect isomorphisms), it is easy to detect the

dualities amongst the natural adjunctions (cf. Theorem 2.9). Otherwise one has

to use stronger conditions on A and B (see (A3), (B3) of 2.8, which, however,

are still weaker than the condition used normally, namely that A and B be

regular cogenerators of sé and ¿% respectively) in order to obtain not only a

characterization of natural dualities but also that, in fact, every representable

duality is isomorphic to a natural one (cf. Corollary 2.11).

In §3 we show that, for fixed A £ \sé\, B £ \S&\, the natural 2-categorical

structure of the family of all (A, 5)-represented contravariant adjunctions or

dualities between sé and 3S , provided there is at least one such duality, can be

transferred to the schizophrenic objects characterizing them. The point of this
transfer is that the composition of adjunctions becomes just the composition of
bijective mappings (cf. Lemma 3.2), a fact that is easily conjectured but rather

tedious to establish. From there it is easy to derive the main result of the paper

concerning the group of isomorphism-classes of dualities between sé and 3§ .

The examples we have been considering in [6] will all just give groups of up
to two elements. In this paper we therefore present only the example of all

Pontryagin-type dualities on a category i? for which DUAL(£P ,fé)¡ = is in

fact an uncountable group.
Our list of references gives just a choice of "generic" articles. We would like

to mention in particular the Lambek-Rattray paper [15] whose Propositions

2.5 and 2.6 come closest to our Theorems 2.5 and 2.9 as far as the general

principle of comparing adjunctions and schizophrenic objects is concerned; the

two propositions, however, require one of the two categories to be algebraic

and are more involved with respect to this algebraic structure. Close relatives

of these propositions, on different levels of generality, were previously published

by Freyd [8], Pultr [21] and Isbell [13]. Further important general references to

Stone-Gelfand-type dualities include [1, 3, 4, 12, 14, 17, 18, 19]. All categorical
notions not defined in the text may be found in [11] or [16].

1. Contravariant adjunctions and dualities

1.1. A contravariant adjunction between two categories sé and 3§ consists of

contravariant functors T: sé -> â§ and S: Z& —> sé such that

(1) sé(A,SB)^3B(B, TA)

naturally in A £ \sé | and B £ \3S | ; we write (S, T): sé -* 38 . There are

units r\B: B —► TSB and co-units eA: A —> STA satisfying

(2) TeA ■ r\TA = It a   and   SnB ■ eSB = Isb

naturally in A e \sé \ and B £ \3§ \. (S, T) is a duality if n and e are

functorial isomorphisms.
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1.2. The contravariant adjunctions between sé and 38 are the objects of a

(meta-)category ADJ(sé , 38 ) whose morphisms

(ô,y):(S,T)->(S',T')

are given by natural transformations y : T —► V, à : S -> S' with

(3) yS-n = T'ô-n'   and   ST>e = S'y -e'.

Of course, â is uniquely determined by y and (3) (and vice versa); hence

ADJ(sé ,38) is equivalent to the full subcategory of right adjoint functors

in the functor category 38^°v. AT>i(sé , 38 ) contains the full subcategory

DUAL(j/ ,38) of dualities between sé and 38 .

1.3. An equivalence of the categories <<o and 3! is a full and faithful (covari-

ant) functor E: %* —> 2 which is surjective on objects up to isomorphisms;

equivalently, there is a functor Fia'-»? such that FE = Id and EF = Id.
Let EQU(j/ ) denote the (meta-)category of equivalences of sé with itself,

considered as a full subcategory of the functor category sé^ . EQU(j/ ) is

actually a 2-category, with one 0-cell: since the composition of equivalences of

sé is again an equivalence of sé , one has a monoid structure. Modulo = , this

is even a group structure since equivalences have "inverses up to ="; in other

words: the quotient monoid EQU(j/ )/ = is a group (disregarding size at this

point).

1.4. Let (So ,T0):sé->38 be a duality. Then the categories DUAL(j/ , 38 )
and EQU(j^) are equivalent; the assignments ¥: (S, T) >->■ S0T, (ô, y) >->

S0y, define an equivalence *¥: D\JAL(sé ,38)-> EQU(sé ). Via ¥ one may

pull back the group structure of EQU(sé)/ = to the family D\JAL(sé ,38)/?*
of isomorphism-classes of dualities between sé and 38 . Explicitly, the multi-

plication in DUAL(j/ ,&)/= is given by

(4) [S,T].[S',T'] = [S'ToS,TSor]

(brackets denote =-classes; (5o, To) is the given duality), making

¥: DUAL(J/ ,38)/^-* EQU(J/ )/ S

a group isomorphism. [So, To] is neutral in DUAL(sé ,38)/ =, and the

inverse of [S, T] is [SbriSb, ToSTo]. Note that the structure of the group
DUAL(j/ ,38)/= does not depend on the choice of the duality (So, T0) ; if we
had started with (Sx, Tx) instead of (S0, T0) to obtain DUAL'(j/ , 38 )/ = ,
then \S, T]i-> [STqSx , TSqT] gives a group isomorphism ~D\JAL(sé,Z$)/ =

-► DUAL'(j/ ,38)/^.

1.5. Remark. Faith [7, p. 65] describes the group structure of EQU(^)/ =
vaguely, and says that an equivalence between two categories or, equivalently,

a duality "is determined up to an autoequivalence", as is verified in 1.4 above.

However, in proving his claim, Faith argues that for equivalences H: £f —> f

and T:sé ->% one has HT = T, which is false even when sé = % and T =

Id: consider the nonidentical equivalence (in fact: isomorphism) H: sé —► sé

with sé the category Ai —> Aq <— A2 (with exactly three objects and two

nonidentical morphisms); then H ^ Id.
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2. Characterization of natural adjunctions and dualities

In this section, let U: sé —> Set and V : 38 -* Set be arbitrary (covariant)

functors.

2.1. A contravariant adjunction (S, T): sé —► 38 is called strictly (A, B)-

represented, with A £ \sé | and B £ \38 \, if

(5) VT = sé(-,À)   and    US = 38(-,B);

(S, T) is strictly represented if it is strictly (A, 5)-represented for suitable

A, B. For such adjunctions, the units and co-units are essentially evaluation

maps; more precisely, for A e \sé \, x £ UA , and B e \38 \, y £ VB , consider

,,. t?Ay.se(A,Ä)^UÄ,       s^(Us)(x),
(6)

ipBy.38(B,B)^VB,        t~(Vt)(y),

T = rs,T: UÄ-* VB,       x ~ V[(Ue~)(x)](l~),

o = os,T:UB-^VA,        y^U[(Vn~)(y)](l~).

Then z and o are bijective, with o = x~x, and

(8) V[(UeA)(x)] = T<pAtX,     U[(VnB)(y)] = oipB,y

(see [15, 6]). We call the strictly (A, Z?)-represented adjunction (S, T) natural

if, for every A £ \sé | and B £ \38 \,

((UeA)(x): TA —> B)xeUA is a F-initial family, and

(iVnB)(y): SB —> A)y€yB isa zj-initial family.

(Recall that a family (fi: A —> Aj)ie!  in sé  is  U-initial if, for any family
(gi: C -» A,)i€l  in sé  and any map h: UC -» UA  with  Ufi • h = Ug¡
(i £ I), one has a unique j/-morphism t: C —* A with Ut = h and fit = g¿

U el).)

2.2. Triples (A, z, B) with A £ \sé \ and B £ \33 \ and a bijection t: UA ->
F5 are called (¿/ , ^ )-schizophrenic objects; they form the objects of a full

subcategory Sch(j/ , 38 ) of the comma category U [ V (cf. [15]), thus a mor-

phism (s, /) : (A, z, B) —> (A', z', B') in Sch(sé , 38) is given by morphisms

s: A^ A' in sé and t: B -> B' in 38 such that

UA —^-» cM'

r r'

Kß   —^-»   J/fi'

commutes. If U is transportable (that is: if for every bijection h : UA —* X

with A £ \sé | there is an j/-isomorphism f: A -* A' with 17/4' = X and
(7/ = /z), or if F is transportable, then Sch(sé , 38) is obviously equivalent

to its full subcategory Scnx¿(sé ,38) of those schizophrenic objects (/4 , r, 5)

for which UA = VB and z = id.
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2.3. For a morphism (ô, y) : (S, T) -♦ (S', V) in AY)l(sé ,38) with
(S, T) strictly (A, 5)-represented and (S',T') strictly (A', ß')-represented,
the Yoneda Lemma yields uniquely determined morphisms s: A —> A' in sé

and t: B -> B' in 38 such that Vy = sé(-, s) and US = 38'(-, 0 ; explicitly,
5 = (^7/4)(l^) and í = (UôB)(lB). Note that, if (<5, y) is an isomorphism

in ADJ(sé ,33), then 5 and t are isomorphisms in j/ and 38 respectively.

With z = zs,t and z' = zs',r (see (7)) one easily checks that one obtains a

morphism (5, t) : (A, z, B) —> (A', z', B') in Sch(j/ ,38). Thus one has a

functor

<D: ADJrep(j/ ,.#)-» Sch(j/ , ^ )

whose domain is the full subcategory of strictly represented adjunctions in

ADJ(j* ,38).
Without any conditions on U and V one has

Proposition. The restriction of O to the full subcategory ADJnat(j/ ,38)  of

natural contravariant adjunctions is full and faithful.

Proof (sketch). Given any morphism

(s,t):^(S,T)^d>(S',T')

in Sch(sé , 38 ), one uses F-initiality of ((Uc'c)(x))xeUC to construct yc: TC

-* T'C for every C £ \sé \, and zj-initiality of ((Vn'D)(y))yeVD to construct

So'- SD —> S'D for every D £ \38 \. This way one obtains a unique pair (S, y)

with 4>(<î,y) = (s,t) (cf. [6, 4.2]).   o

Remarks. ( 1 ) If F is faithful, it suffices to envoke only the first initiality prop-

erty to construct y and obtain ô by adjunction.  (2) If U = sé(Ao, -) and

V = 38(B0, -) are representable, then for any adjunction (S, T): sé -^38

one has  US = 38(-, TA0) and  VT s sf{-,SB0).   Moreover, if U and
V are transportable, then there is a strictly (SBo, r/4o)-representable adjunc-

tion (S',T') which is isomorphic to (S, T) in AD3(sé,38). Therefore,
ADJrep(sé, £g ) is equivalent to ADJ(^,^) for U, V representable and

transportable.

2.4. For a natural adjunction (S, T) and for (A, z, B) = Q>(S, T), from 2.1
one has the following two properties:

(Al)  for every A £ \sé \, there is a  K-initial family (eA,x: TA —> B)x€uA

with VeA,x = TcpAtX, x £ UA;

(Bl) for every B £ \38 \, there is a [/-initial family (dBiy: SB -> A)y€VB

with UdB,y = T"Vfi,y , y £ VB .

Let Seh] (sé ,38)  be the full subcategory of Sch(sé , 38 )  containing the

objects (A, z, B) that satisfy conditions (Al) and (Bl). Recall that the functor

U is called amnestic if every sé -isomorphism /: A —> A' with UA = UA' and

Ufi =1 is an identity morphism itself.

2.5 Theorem. ADJmt(sé,38) and Schx(sé,33) are equivalent categories;

they are even isomorphic if U and V are amnestic.

Proof (sketch). In order to show that the obvious restriction of í> is an equiv-

alence, one just needs to show that for every (A, z, B) £ | Schi (sé , 38 )\ there
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is a natural adjunction (S, T) and <P(S, T) = (A,z,B). By (Al) of 2.4, T
is already defined on objects; by F-initiality, for /: A —► A' in sé , there is

only one morphism Tfi in 38 with VTfi = sé (fi, A) such that

TA  -^U      B

TA1

commutes for all x £ UA. The co-unit eA : A —> STA is the morphism with

(UeA)(x) = eA<x that makes

STA -^^ Ä

A

commute for all s £ sé (A, A). Denote the strictly (sé , 38) -represented natural

adjunction obtained this way by *¥(Ä, z, B). Then W = Id and *FO ̂  Id.
When U, V are amnestic, then the domains of the initial families used in (Al),

(Bl) are not only unique up to isomorphism, but unique, thus TO = Id.   D

2.6.    For fixed objects A £ \sé \, B £ \38\ we may consider the categories

ADJ^f (sé , 38 )   of  strictly   (A, ß)-represented   natural   adjunctions   and

Schf 'B(sé , 38 ) of schizophrenic objects (A, z, B) that satisfy (Al) and (Bl)
of 2.4.

Corollary (cf. [6]). ADJ„¿tB(sé , & ) and Schf -B(sé ,&) are equivalent, even

isomorphic if U and V are amnestic,   a

2.7 Remark. For a schizophrenic object (A,z,B) that satisfies condition

(Al) of 2.4 but not necessarily (Bl), one can still construct the contravariant

functor T:sé -► ̂ with VT = sé(-, A). Obviously, if V reflects limits, in

particular if V is monadic, then T transforms colimits of sé into limits of

38 . Less obviously, the same conclusion can be drawn if U preserves colimits;

more precisely, one can show that T transforms those colimits of sé which

are preserved by U, into limits of 38 . Therefore, under suitable assumptions

on V or Î7, and if sé is compact (in the sense of Isbell, for instance if sé

is cocomplete and cowellpowered and has a generator), an adjoint S exists.

However, that US = 38(-, B) holds in general is not guaranteed.

2.8. For a natural duality (S, T), i.e. for a natural contravariant adjunction

whose units nB , B £ \38 \, and co-units eA , A £ \sé \, are all isomorphisms,

translation of the necessary conditions that UeA and VnB are isomorphisms in

terms of (Ä, x, B) = <t>(S, T), with eA,x = (UeA)(x) and dB<y = (VnB)(y),

gives

(A2) for every A £ \sé\ and every t £ 38(TA, B) there is a unique x £ UA

such that eAtX = t (that is essentially: every f.TA^B in 38 is an

evaluation map at a unique point x £ UA);
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(B2) for every B £ \38 \ and every 5 £ sé (SB, A) there is a unique y £ VB

such that dBty = s.

Condition (A2) means that the family (eA,x)xeuA considered in (Al) is actu-

ally the hom-set 38(TA, B); dually, (dBy)))yeyB is sé (SB, A). Hence, for a
duality (S, T), conditions (Al), (Bl), (A2), (B2) imply

(A3) for every A £\sé \, the hom-set sé (A, A) is zj-initial;

(B3) for every B e \38 \, the hom-set 33(B, B) is F-initial.

Vice versa, let us consider a schizophrenic object (A,z, B) with (Al), (Bl),

(A2), (B2); then, by 2.5, we have a natural adjunction (S, T) with Q>(S, T) =

(A,z,B) and Ue, Vn isomorphisms. If U and V are conservative, i.e. reflect

isomorphisms, then this suffices to conclude that (S, T) is a duality. For arbi-

trary U and V, one has to envoke conditions (A3), (B3) to construct inverses

IA and rjB of eA and rjB respectively: IA is the arrow with UeA = (UeA)~x

that makes

commute for all s £sé(A, A).
DUALrep^ , 33 ) and DUALnat(j/ , 33 ) denote the subcategories of duali-

ties in AÏÏÏKV(sé ,33) and ADJnM(sé ,33 ) respectively, and by Schi,2(^,^)

and Schi, 2 t i(sé , 33 ) we denote the subcategories of Schi (sé , 38 )-objects that

satisfy conditions (A2), (B2) and, in the case Schx ̂ 2^(sé , 33), in addition

(A3), (B3). The above remarks sketch the proof of

2.9 Theorem. DUALnat(j/ , 33 ) is equivalent to Schx j2i(sé ,33); incase

U and V are conservative, it is even equivalent to Schx ̂ 2(sé , 33 ). These

equivalences are isomorphisms of categories, if U and V are also amnestic.   D

Adapting the terminology of 2.6 to the context of 2.9 one obtains

2.10 Corollary. D\JAL*¿B(sé ,38) is equivalent to Schf f (j/ ,33) if U and
V are conservative. "Equivalent" can be replaced by "isomorphic" if U and V

are also amnestic.   D

2.11. As pointed out in 2.8, (A3), (B3) are necessary conditions for the ex-

istence of a natural strictly (A, B)-represented duality between sé and 33 .

Vice versa, considering a pair of objects (A, B) in sé x 33 that satisfies (A3),

(B3), any strictly (A, B)-represented duality is natural. Hence one has

Corollary (cf. [6]). For objects A, B with (A3), (B3), one has that

DUAL^j/ ,33) = DUAL^tB(sé , ̂  )

is equivalent to Sch^'f (sé ,33), even isomorphic if U and V are amnestic.

2.12 Remark. Condition (A3) is certainly satisfied if A is a regular cogener-

ator of the complete category sé , and if U is faithful and preserves limits, in

particular if U is a faithful representable. (Note that the existence of a strictly
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(A, B)-represented duality necessarily makes U and V representable, and also

faithful if A and B are cogenerators.)

3. The main theorem

For simplicity, henceforth U and V are assumed to be faithful, trans-

portable and amnestic. (The combination of the latter two properties means

that, in the sense of Lambek and Rattray [15], U and V have unique transfer.

Hence, in the case of U, any bijection j: X —> UA' with A' £ \sé | gives a

uniquely determined sé -isomorphism i: A —> A' with Ui = j.)

3.1. We return to the composition (4) of 1.4 which, however, will not be consid-

ered just for isomorphism classes of dualities or adjunctions. As before, we fix

a duality (S0, T0) : sé -► 33 , and then define 2-categories ADJ=(sé , & ) [and
DUAL=(j/ , 33)] as follows: the only 0-cell is, in both cases, the given duality

(So, To) ; 1 -cells are all contravariant adjunctions [dualities] (S, T): sé -+33
with US = US0 and VT = VT0, and 2-cells are AD3(sé , 33 )-morphisms as
described in 1.2. In order to define the composition of 1 -cells (S, T), (S', V),

one has to find an isomorphic copy of the adjunction (S'TqS , TSqT') that be-

longs to ADJ= (sé ,33): since V is transportable and amnestic, there is an

endofunctor F: 33 —► 33 and a functorial isomorphism p: F —> TSo with

VF = V and Vp = Vn0 (with Z70 the unit of (So, T0)), both uniquely deter-
mined; similarly, there are E: sé —> sé and v : E -* S'T0 with UE = U and

Uv = Uto (with £o the co-unit of (So, To)); now put

(9) (S, T)-(S', T') = (ES,FT').

This composition provides the 1-cells with a monoid structure and can be easily
extended to all 2-cells, using the isomorphism

(vS, pT'): (ES, FT') -^ (S'T0S, TS0T')

in ADJ(sé ,33). We omit the details of checking that AUJ=(sé , 33 ) and

DUAL=(sé , 33) become 2-categories this way. If (So, To) is strictly (A, Un-

represented, these 2-categories contain ADJ^B (sé ,33) and DUAL^'(sé,33)

as sub-2-categories respectively.

For (S0, r0), (S,T), (S', V) all strictly (A, B)-reoresented with induced

bijections zo,z,z' respectively, and with ero = ^Zx, one has the following

crucial:

3.2   Lemma. The schizophrenic object induced by the composition   (S, T) •

(S',T') is (A,zooz',B).

Proof. We must compute the schizophrenic object (A,z,B) induced by the

contravariant adjunction (9) whose co-unit e is given by

ê = v-xSFT • S'ToSpT' • S'T0eS0T' • S'n^T' ■ e'.

For x £ UÄ, z(x) is given by formula (7), so that with US = 33(-, B) and
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Uv = Ueo one obtains

z(x) = V[(U-e~)(x)](l~)

= ^Uvsirl' US'«K%>r T«\t<à- To^tù) ■ Ue'~)(xW~)

= V[(U(^)SFT,r33((n-x)T~. T0eSoT,r T0SpT,~, B) ■ Ue'~)(xWf)

= V[(U(eZl)SFT,~)(g)](lI)

with g := (Ue'~)(x) • (t]Z{)T,A- Tqs^-- T0SpT,~.  Therefore, putting h :=

(U(eZl)SFT,~)(g), we obtain x(x) = (Vh)(l~). Hence, in order to show the

desired formula, we must show

(10) zo0z'(x) = (Vh)(l2).

An easy computation, envoking only formulas (5) and (7) and the naturality of

n, gives that, for any h £ 33(FT'A, B),

o((Vh)(l~)) = (Us)(h)

with s = (VnFT~)(l~) £ sé(SFT'À, À) = VT0SFT'À. Therefore, in order to

obtain (10), we need to show only

(11) z'(x) = z0((Us)(h)).

By definition of h , g = (U(eo)SFT,A)(h). Hence, by (8),

ys=V[(U(,o)SFVA)(h)] = zocpSFT,~h.

Thus, with (6) and (5), for every 5 £ sé(SFT'Â, À) = VT0SFT'À we have

Xo((Us)(h)) = (ro<PSFT,Ath)(s) = (Vg)(s)

= V[(Ue~)(x)](V(n-x)rAi(VTo(SpT~- e^,-))^)])

= V[(Ue'~)(x)](s)

with s := V(nQX)T,^s • SpT,~- eg T,~]. We shall show below

(12) s=l~.

This will then give us (11) as required, since

z0((Us)(h)) = V[(Ue'~)(x)](l~) = z'(x)

and therefore concludes the proof. Hence we are left with having to show (12).

Indeed, for every t £ 33(T'A, B) we have, by repeated application of (6) and

(8), and since Vtjo = Vp,

U[(V((no)Tl7)(lMt) = <?^Tl7t((V(n0)Tl7)(l7))

= ^muBSoT~){t)]{vpT~)(i~)

= x~~' ¥PT> 7 , SiV^T. l)W * Vt, j)

-1

"^rJ,,((%j)(1j))

FT'A,\y^       S0T'A'y '    nTA'
A

= ('r--^rI,l7'^(riTIA,B)-UeSoTlI)(t).
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Therefore, with (8) and (5) one obtains

U[(V((n0)T,~)(l~)] = U[(VnFT,~)(l~)] • USpT~- Ue^,-

= U[iVnFT~)(l~).SpT~.eSoT~].

Finally, since U is faithful, and by choice of s,

(V{m)Tl7){i7) = s-SpT,reSoT~

follows, hence s = lr by definition of s.   D

3.3.   We can use the functor O of 2.3 to transfer the 2-categorical structure

of DUAL^j/ ,38) to SchAx'2(sé ,33), envoking 2.11. The point of 3.2 is
that this structure has a simple description: the composition of 1-cells is just the

composition of maps, i.e. writing z for (A, z, B) one has z-z' = zoqz' . In view

of (4) of 1.4, this formula may not look impressive; however, a priori it is not

at all clear that Schf 'B(sé , 33) is closed under this multiplication! We shall

summarize the consequences of 2.9, 2.11, and 3.2 just for isomorphism-classes

of dualities and schizophrenic objects (brackets denote, as in 1.4, =-classes):

3.4 Theorem. Let (So, T0) : sé , —> 33 be a strictly (A, B)-represented duality,

with induced schizophrenic object to : UA —* VB and oq = zZx, and let A and

B satisfy (the cogenerator-like) conditions (A3) and (B3) of2.S. Then there is

an isomorphism of groups

DUAL^B(sé ,33)/ =-+ Schf '2(sé ,38)1* .

Here isomorphism-classes of dualities are composed as in 1.4(4), and isomorphism-

classes ofbijections z: UA -► VB satisfying (Al), (Bl), (A2), (B2) o/2.4, 2.8
are composed by the rule [z] • [z1] = [tctot'] .    D

4.  PONTRYAGIN-TYPE DUALITIES

Throughout this section, & is the category of all discrete and of all compact

abelian groups. Its underlying Set-functor U = W(Z, -):£?—> Set is faithful,

transportable, amnestic and representable; for a morphism cp in fê, we nor-

mally write again <p for U<p . Our objective is to describe the structure of the

group DUAL(^, ^ )/ s. The circle group E/Z is denoted by T.

4.1 Lemma. Every duality (S, T): W —» W is isomorphic to a strictly (T, T)-

represented duality whose induced schizophrenic object z: T —► T is an (al-

gebraic) isomorphism of abelian groups. In particular, DUAL(£P, ^)/ = is

isomorphic to DUAL^1"^,W)/=.

Proof. The first assertion follows from Lemma 6 of [22], and from Lemmas

5, 1, 2 of [22] one obtains that S and T are additive functors. This fact

easily gives that, for A £ |£f |, the underlying Abelian group of SA and TA
is (isomorphic to) W(A,T) with its natural algebraic structure, and that the

bijection z is a homomorphism (cf. [6, 5.4]).   □

The crucial property of T is that any algebraic homomorphism h: A —>

B of locally compact abelian groups is continuous as soon as //z : A —► T is
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continuous for every character (=cont. horn.) /: B —> T, cf. [10, 23]. From

here one easily derives that condition (A3)=(B3) is satisfied for A = B = T in

sé = 38 = W. Hence we have with 3.4 and 4.1:

4.2 Corollary.  DUAL(f, W)/ Si is isomorphic to Sen?;\{fg ,&)/*.   D

So we are left with the problem to describe Sch['J(g\ g7)/ *. We al-

ready know that every representative z : T —> T of a =-class is an algebraic

automorphism. The only continuous ones are id and - id. Hence z = z'

holds in Schf'J^, W) if and only if z' = z or z' = -z. In other words:

Sch};J(f, <g)¡ s is a subgroup of AutGrp(T)/{id, -id}, with AutGrp(T) the

group of algebraic automorphisms of T. (Note that, of course, we take the

classical Pontryagin duality as our initially chosen (So, To) in 3.1 since then

<?o = Tö' = id, i.e. the formula of 3.3 becomes the composition formula of

AutGrp(T).)

4.3 Theorem.  DUAL(^ ,&)/* is isomorphic to AutGrp(T)/{id, - id}.

Proof. We just need to show that every group automorphism z : T —» T satisfies

conditions (Al), (Bl), (A2), (B2), so that

AutGrp(T)/{id, -id} = Sch[;2V, V)l s .

First, we can modify the natural topology of T to obtain a compact Abelian

group TT such that z : TT -» T is a homeomorphism. Now for A £\W\, define

TXA £ \W |, as follows: for A compact, TtA is the group ^(A, T) with the
discrete topology; for A discrete, TXA is the group "W(A, T) = Grp(/1, T) with

the subspace topology of the Tychonoff product (TX)A . For every x £ A , one

has the g'-morphism

el = (TXA^ TT^T)

with itx the xth product projection. To show conditions (Al), (A2) (and

symmetrically, (Bl), (B2)) we must prove that (exx)x^A is a [/-initial family,

and that the map x •-> ex gives a bijection of the sets A and W(TXA, T).

Case 1: A is discrete. Products and subspaces are, by definition, formed

in such a way that (nx)xeA is [/-initial, hence (ex)x€A is [/-initial as well

since t : TT —► T is a homeomorphism. To show (A2) we first consider the case

t = id ; that is the case of the classical Pontryagin duality P : W -* W, with

PA = TidA, for which one knows that every character x £ fê(PA, T) is of

the form x = nx (= exd) for a unique point x £ A. But PA and TZA are

homeomorphic under the restriction of the homeomorphism zA : (TZ)A —> T4,

so the assertion (A2) follows from the corresponding classical result.

Case 2: A is compact. In this case both PA and TXA provide fë(A, T)
with the discrete topology, hence they are equal. Classically one knows that

(nx: PA - T)X&A is equal to &(PA, T) and [/-initial (by 3.4). But W(PA, T)
= ^(TXA, TT), by discreteness, hence (ex)x&A = (znx)x&A is z • ̂ (TXA, TT) =

W(TXA,T).   a

Note that the isomorphism PA = TXA which exists for all A £ \W\, is not

natural in A.
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4.4 Corollary. There are uncountably many nonisomorphic dualities of W with

itself.

Proof. It suffices to show that the group AutT = AutGrp(T) is not countable.

In fact,

T^   ®  Z(p°°)©0Qa
p prime a<o

(with Z(p°°) the p-Sylow subgroup of T, Qa = Q and c the cardinal number

of the continuum), see [9]. Clearly, each Aut Z(p°°) is a subgroup of AutT,

and it is isomorphic to the units of the ring of /z-adic integers, of which there

are ^-many (cf. [9]).   D

4.5 Remarks. (1) There are actually uncountably many dualities of %Z with

itself of type ( T, T). For this it suffices to find uncountably many involutions

in AutGrp(T). But, using the presentation of T as a direct sum as in 4.4, for

each a < c we can find an automorphism za of T with Ta|Qo = -id and za

identical on all other summands. Since z^ = id, the proof is complete.

(2) Note that 4.4 no longer holds if W is replaced by the category sé of

all locally compact Abelian groups: the Pontryagin-van Kampen duality of sé

with itself is, up to isomorphism, the only duality of sé with itself (cf. [22, 6]).

Generalizations of these results appear in [5].
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