Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Branched surfaces and attractors. I. Dynamic branched surfaces


Author: Joe Christy
Journal: Trans. Amer. Math. Soc. 336 (1993), 759-784
MSC: Primary 58F12; Secondary 57M50, 57N10, 58F15
DOI: https://doi.org/10.1090/S0002-9947-1993-1148043-8
MathSciNet review: 1148043
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show how, using ideas of R. F. Williams about branched surfaces, hyperbolic attractors of flows on three manifolds may be classified up to topological equivalence on an isolating neighborhood by a finite combinatorial object, a swaddled graph.


References [Enhancements On Off] (What's this?)

  • [AS] R. Abraham and S. Smale, The nongenericity of structural stability, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R.I., 1970, pp. 5-8. MR 0271986 (42:6867)
  • [C1] J. Christy, Intransitive Anosov flows on three-manifolds, Mem. Amer. Math. Soc. (to appear).
  • [C2] -, Branched surfaces and attractors. II: Naming names, (in preparation).
  • [C3] -, Immersing branched surfaces in dimension three, Proc. Amer. Math. Soc. (to appear). MR 1098398 (93d:57008)
  • [FO] W. Floyd and U. Oertel, Incompressible surfaces via branched surfaces, Topology 23 (1984), 117-125. MR 721458 (85a:57007)
  • [Fr] D. Fried, Fibrations over $ {{\mathbf{S}}^1}$ with pseudo-Anosov monodromy, Astérisque 66-67 (1979), 251-266.
  • [GW] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59-72. MR 556582 (82b:58055a)
  • [He] J. Hempel, $ 3$-manifolds, Princeton Univ. Press, Princeton, N.J., 1976. MR 0415619 (54:3702)
  • [Hi] M. Hirsch, Differential topology, Springer-Verlag, New York, 1976. MR 0448362 (56:6669)
  • [M] R. Mañé, A proof of the $ {C^1}$ stability conjecture, Inst. Hautes Études Sci. Publ. Math. 66 (1989), 41-73.
  • [N] S. Novikov, Topology of foliations, Trans. Moscow Math. Society 14 (1965), 268-305. MR 0200938 (34:824)
  • [O] U. Oertel, Measured laminations in $ 3$-manifolds, Trans. Amer. Math. Soc. 305 (1988), 531-573. MR 924769 (89d:57011)
  • [Pa] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378. MR 0197683 (33:5846)
  • [PI] M. Peixoto, On structural stability, Ann. of Math. 69 (1959), 199-222. MR 0101951 (21:753)
  • [P2] -, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120. MR 0142859 (26:426)
  • [Rou] R. Roussarie, Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 101-142. MR 0358809 (50:11268)
  • [Rob] R. C. Robinson, Structural stability of vector fields, Ann. of Math. 99 (1974), 154-175. MR 0334283 (48:12602)
  • [Sh] M. Shub, Global stability of dynamical systems, Springer Verlag, New York, 1986. MR 869255 (87m:58086)
  • [Sm1] S. Smale, On dynamical systems, Bol. Soc. Mat. Mexicana (2) 5 (1960), 195-198. MR 0141855 (25:5252)
  • [Sm2] -, The mathematics of time, Springer Verlag, New York, 1980. MR 607330 (83a:01068)
  • [Ta] F. Tangerman, Topological conjugacy for correspondences, personal communication.
  • [T] W. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low Dimensional Topology and Kleinian Groups (D. B. A. Epstein, ed.), Cambridge Univ. Press, Cambridge, 1986, pp. 91-112. MR 903860 (88m:57015)
  • [Wald] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88. MR 0224099 (36:7146)
  • [Wms] R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1973), 473-487. MR 0348794 (50:1289)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F12, 57M50, 57N10, 58F15

Retrieve articles in all journals with MSC: 58F12, 57M50, 57N10, 58F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1148043-8
Keywords: Attractor, isolating neighborhood, branched surface, swaddled graph, topological equivalence
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society