Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A construction of the supercuspidal representations of $ {\rm GL}\sb n(F),\;F\;p$-adic


Author: Lawrence Corwin
Journal: Trans. Amer. Math. Soc. 337 (1993), 1-58
MSC: Primary 22E50; Secondary 11S37
DOI: https://doi.org/10.1090/S0002-9947-1993-1079053-7
MathSciNet review: 1079053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a nondiscrete, locally compact, non-Archimedean field. In this paper, we construct all irreducible supercuspidal representations of $ G = {\text{GL}_n}(F)$ For each such representation $ \pi $ (which we may as well assume is unitary), we give a subgroup $ J$ of $ G$ that is compact mod the center $ Z$ of $ G$ and a (finite-dimensional) representation $ \sigma $ of $ J$ such that inducing $ \sigma $ to $ G$ gives $ \pi $. The proof that all supercuspidals have been constructed appeals to a theorem (the Matching Theorem) that has been proved by global methods.


References [Enhancements On Off] (What's this?)

  • [1] C. Asmuth and D. Keys, Supercuspidal representations of $ {\text{GSp}_4}$ over a local field of residual characteristic 2. I, II, preprints.
  • [2] C. Bushnell, Hereditary orders, Gauss sums, and supercuspidal representations of $ {\text{GL}_N}$, J. Reine Angew. Math. 375/376 (1987), 184-210. MR 882297 (88e:22024)
  • [3] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci École Norm. Sup. (4) 17 (1984), 191-225. MR 760676 (86f:22019)
  • [4] L. Corwin, The unitary dual for the multiplicative group of arbitrary division algebras over local fields, J. Amer. Math. Soc. 2 (1989), 565-598. MR 984512 (90d:22021)
  • [5] -, Constructing the supercuspidal representations of $ {\text{GL}_n}(F)$, $ F$ $ p$-adic, Proc. Bowdoin Conf. August 1989 (to appear).
  • [6] L. Corwin, A. Moy, and P. J. Sally, Degrees and formal degrees for division algebras and $ {\text{GL}_n}$ over a $ p$-adic field, Pacific J. Math. 141 (1990), 21-45. MR 1028263 (90k:22025)
  • [7] P. Deligne, D. Kazhdan, and M.-F. Vigneras, Représentations des algebres centrales simples $ p$-adiques, Représentations des Groupes Rédutifs sur un Corps Local, Hermann, Paris, 1984, pp. 33-117. MR 771672 (86h:11044)
  • [8] P. Gérradin, Construction de séries discrètes $ p$-adiques, Lecture Notes in Math., vol. 462, Springer, 1975.
  • [9] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer, 1972. MR 0342495 (49:7241)
  • [10] R. Howe, Tamely ramified supercuspidal representations of $ {\text{GL}_n}$, Pacific J. Math. 73 (1977), 365-381. MR 0492087 (58:11241)
  • [11] R. Howe and A. Moy, Minimal $ K$-types for $ {\text{GL}_n}$, preprint, 1986.
  • [12] -, Hecke algebra isomorphisms for $ {\text{GL}_n}$ over a $ p$-adic field, preprint.
  • [13] D. Kazhdan, Representations of groups over close local fields, J. Analyse Math. 47 (1986), 175-179. MR 874049 (88g:22018)
  • [14] H. Koch, Eisensteinsche Polynomfolgen und Arithmetik in Divisionsalgebren über lokalen Körpern, Math. Nachr. 104 (1981), 229-251. MR 657895 (84d:12015)
  • [15] P. Kutzko and D. Manderscheid, On intertwining operators for $ {\text{GL}_N}(F)$, $ F$ a non-Archimedean $ p$-adic field, Duke Math. J. 57 (1988), 275-293. MR 952235 (90c:22054)
  • [16] -, On the supercuspidal representations of $ {\text{GL}_N}$, $ N$ the product of two primes, preprint, 1988.
  • [17] G. W. Mackey, Induced representations of groups, Amer. J. Math. 73 (1951). MR 0042420 (13:106d)
  • [18] L. Morris, $ P$-cuspidal representations of level $ 1$, preprint. MR 950594 (89j:22038)
  • [19] A. Moy, Local constants and the tame Langlands correspondence, Amer. J. Math. 108 (1986), 863-930. MR 853218 (88b:11081)
  • [20] -, Representations of $ {\text{GS}_p}(4)$ over a $ p$-adic field. I, II, Compositio Math. 66 (1988), 237-284, 285-328. MR 948308 (90d:22022)
  • [21] J. Rogawski, Representations of $ {\text{GL}}(n)$ and division algebras over a $ p$-adic field, Duke Math. J. 50 (1983), 161-196. MR 700135 (84j:12018)
  • [22] T. Springer, Characters of special groups, Semisimple Algebraic Groups and Related Finite Groups, Lecture Notes in Math., vol. 131, Springer, 1970, pp. 121-166. MR 0263943 (41:8542)
  • [23] A. V. Zelevinsky, Induced representations of reductive $ p$-adic groups, II. On irreducible representations of $ {\text{GL}}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-211. MR 584084 (83g:22012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E50, 11S37

Retrieve articles in all journals with MSC: 22E50, 11S37


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1079053-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society