Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Symmetrization with respect to a measure


Authors: Friedmar Schulz and Virginia Vera de Serio
Journal: Trans. Amer. Math. Soc. 337 (1993), 195-210
MSC: Primary 49Q15; Secondary 26B99, 28A20, 30C20
MathSciNet review: 1088477
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the spherical symmetric rearrangement $ {u^\ast}$ of a nonnegative measurable function $ u$ on $ {\mathbb{R}^n}$ with respect to a measure given by a nonhomogeneous density distribution $ p$. Conditions on $ u$ are given which guarantee that $ {u^\ast}$ is continuous, of bounded variation, or absolutely continuous on lines, i.e., Sobolev regular. The energy inequality is proven in $ n = 2$ dimensions by employing a Carleman type isoperimetric inequality if $ \log p$ is subharmonic. The energy equality is settled via a reduction to the case of a homogeneous mass density.


References [Enhancements On Off] (What's this?)

  • [B] J. Brothers, The isoperimetric theorem, Centre Math. Anal. Preprint R05-87, Australian National Univ., Canberra, 1987.
  • [BS] Heinrich Behnke and Friedrich Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. LXXVII, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0073682
  • [BZ] John E. Brothers and William P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. MR 929981
  • [C] Torsten Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), no. 1-2, 154–160 (German). MR 1544458, 10.1007/BF01378342
  • [EG] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
  • [F] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • [FM] Avner Friedman and Bryce McLeod, Strict inequalities for integrals of decreasingly rearranged functions, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 3-4, 277–289. MR 852361, 10.1017/S0308210500026366
  • [H] Keijo Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), no. 3, 215–235. MR 0409773
  • [HU] Alfred Huber, On the isoperimetric inequality on surfaces of variable Gaussian curvature, Ann. of Math. (2) 60 (1954), 237–247. MR 0065946
  • [K] Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. MR 810619
  • [L] S. Lozinski, On subharmonic functions and their application to the theory of surfaces, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 8 (1944), 175–194 (Russian, with English summary). MR 0011371
  • [N] Zeev Nehari, On the principal frequency of a membrane, Pacific J. Math. 8 (1958), 285–293. MR 0097606
  • [S] F. Schulz, Der Faber-Krahnsche Satz für Dirichlet-Gebiete in $ n$ Dimensionen, Diplomarbeit, Georg-August-Universität, Göttingen, 1977.
  • [SP] Emanuel Sperner Jr., Symmetrisierung für Funktionen mehrerer reeler Variablen, Manuscripta Math. 11 (1974), 159–170 (German, with English summary). MR 0328000
  • [T] Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 0463908
  • [VS] V. Vera de Serio, Spherical symmetric rearrangements with respect to a nonhomogeneous mass density, Dissertation, The University of Iowa, Iowa City, 1989.
  • [W] William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49Q15, 26B99, 28A20, 30C20

Retrieve articles in all journals with MSC: 49Q15, 26B99, 28A20, 30C20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1993-1088477-3
Keywords: Schwarz symmetrization, spherical symmetric rearrangement, isoperimetric inequality, energy inequality, Faber-Krahn inequality, nonhomogeneous mass density, coarea formula, Sobolev function, function of bounded variation
Article copyright: © Copyright 1993 American Mathematical Society