Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Symmetrization with respect to a measure

Authors: Friedmar Schulz and Virginia Vera de Serio
Journal: Trans. Amer. Math. Soc. 337 (1993), 195-210
MSC: Primary 49Q15; Secondary 26B99, 28A20, 30C20
MathSciNet review: 1088477
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the spherical symmetric rearrangement $ {u^\ast}$ of a nonnegative measurable function $ u$ on $ {\mathbb{R}^n}$ with respect to a measure given by a nonhomogeneous density distribution $ p$. Conditions on $ u$ are given which guarantee that $ {u^\ast}$ is continuous, of bounded variation, or absolutely continuous on lines, i.e., Sobolev regular. The energy inequality is proven in $ n = 2$ dimensions by employing a Carleman type isoperimetric inequality if $ \log p$ is subharmonic. The energy equality is settled via a reduction to the case of a homogeneous mass density.

References [Enhancements On Off] (What's this?)

  • [B] J. Brothers, The isoperimetric theorem, Centre Math. Anal. Preprint R05-87, Australian National Univ., Canberra, 1987.
  • [BS] H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer-Verlag, New York, Berlin and Heidelberg, 1972. MR 0073682 (17:470c)
  • [BZ] J. Brothers and W. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153-179. MR 929981 (89g:26013)
  • [C] T. Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), 154-160. MR 1544458
  • [EG] L. C. Evans and R. F. Gariepy, Lecture notes on measure theory and fine properties of functions, Kentucky EPSCoR Preprint Series, Univ. of Kentucky, Lexington, Ken., 1987. MR 1158660 (93f:28001)
  • [F] H. Federer, Geometric measure theory, Springer-Verlag, New York and Heidelberg, 1969. MR 0257325 (41:1976)
  • [FM] A. Friedman and B. McLeod, Strict inequalities for integrals of decreasingly rearranged functions, Proc. Roy. Soc. Edinburgh 102 (1986), 277-289. MR 852361 (87j:26024)
  • [H] K. Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math. 18 (1976), 215-235. MR 0409773 (53:13525)
  • [HU] A. Huber, On the isoperimetric inequality on surfaces of variable Gaussian curvature, Ann. of Math. (2) 60 (1954), 237-247. MR 0065946 (16:508d)
  • [K] B. Kawohl, Rearrangements and convexity of level sets in $ PDE$, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. MR 810619 (87a:35001)
  • [L] S. Lozinski, On subharmonic functions and their applications to the theory of surfaces. Bull. Acad. Sci. URSS. Ser. Math. [Izv. Akad. Nauk SSSR] 8 (1944), 175-194. MR 0011371 (6:155e)
  • [N] Z. Nehari, On the principal frequency of a membrane, Pacific J. Math. 8 (1958), 285-293. MR 0097606 (20:4074)
  • [S] F. Schulz, Der Faber-Krahnsche Satz für Dirichlet-Gebiete in $ n$ Dimensionen, Diplomarbeit, Georg-August-Universität, Göttingen, 1977.
  • [SP] E. Sperner, Symmetrisierung für Funktionem mehrerer reeller Variablen, Manuscripta Math. 11 (1974), 159-170. MR 0328000 (48:6342)
  • [T] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. MR 0463908 (57:3846)
  • [VS] V. Vera de Serio, Spherical symmetric rearrangements with respect to a nonhomogeneous mass density, Dissertation, The University of Iowa, Iowa City, 1989.
  • [W] W. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, Berlin and Heidelberg, 1989. MR 1014685 (91e:46046)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49Q15, 26B99, 28A20, 30C20

Retrieve articles in all journals with MSC: 49Q15, 26B99, 28A20, 30C20

Additional Information

Keywords: Schwarz symmetrization, spherical symmetric rearrangement, isoperimetric inequality, energy inequality, Faber-Krahn inequality, nonhomogeneous mass density, coarea formula, Sobolev function, function of bounded variation
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society