Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Composition algebras over algebraic curves of genus zero


Author: Holger P. Petersson
Journal: Trans. Amer. Math. Soc. 337 (1993), 473-493
MSC: Primary 17A75; Secondary 14H99, 17A45, 17D05
DOI: https://doi.org/10.1090/S0002-9947-1993-1108613-X
MathSciNet review: 1108613
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We rephrase the classical theory of composition algebras over fields, particularly the Cayley-Dickson Doubling Process and Zorn's Vector Matrices, in the setting of locally ringed spaces. Fixing an arbitrary base field, we use these constructions to classify composition algebras over (complete smooth) curves of genus zero. Applications are given to composition algebras over function fields of genus zero and polynomial rings.


References [Enhancements On Off] (What's this?)

  • [A] A. A. Albert, Quadratic forms permitting composition, Ann. of Math. (2) 43 (1942), 161-177. MR 0006140 (3:261a)
  • [BS] F. van der Blij and T. A. Springer, The arithmetics of octaves and the group $ {G_2}$, Nederl. Akad. Wetensch. Indag. Math. 21 (1959), 406-418. MR 0152555 (27:2533)
  • [EGA] A. Grothendieck, Éléments de géométrie algébrique. II, Inst. Hautes Études Sci. Publ. Math. 8 (1961).
  • [H] G. Harder, Halbeinfache Gruppenschemata über vollständigen Kurven, Invent. Math. 6 (1968), 107-149. MR 0263826 (41:8425)
  • [Ha] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., vol. 52, Springer-Verlag, New York, Heidelberg and Berlin, 1977. MR 0463157 (57:3116)
  • [K] M. Knebusch, Grothendieck- und Wittringe von nicht-ausgearteten symmetrischen Bilinearformen, Sitzungsber. Heidelb. Akad. Wiss. Math.-Natur. Kl., Springer-Verlag, Berlin, Heidelberg and New York, 1970.
  • [Kn] M.-A. Knus, Bundles on $ {{\mathbf{P}}^2}$ with a quaternionic structure. Proc. Conf. Vector Bundles on Algebraic Varieties, Tata Institute of Fundamental Research, Bombay, 1984.
  • [Kü] B. Küting, Kompositionsalgebren über rationalen Funktionenkörpern, Dissertation, FernUniversität, Hagen, 1987.
  • [KS] R. Kunze and S. Scheinberg, Alternative algebras having scalar involutions, Pacific J. Math. 124 (1986), 159-173. MR 850673 (87i:17031)
  • [L] T. Y. Lam, Serre's conjecture, Lecture Notes in Math., vol. 635, Springer-Verlag, Berlin, Heidelberg and New York, 1978. MR 0485842 (58:5644)
  • [Le] S. Legrand, Généralisations d'un théorème sur les algebres munies d'une forme quadratique multiplicative, C. R. Acad. Sci. Paris Ser. A 274 (1972), 231-234. MR 0289595 (44:6783)
  • [M] K. McCrimmon, Nonassociative algebras with scalar involution, Pacific J. Math. 116 (1985), 85-109. MR 769825 (86d:17003)
  • [Mi] J. S. Milne, Étale cohomology, Princeton Univ. Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
  • [PI] H. P. Petersson, Composition algebras over a field with a discrete valuation, J. Algebra 29 (1974), 414-426. MR 0364380 (51:635)
  • [P2] -, Composition algebras over the projective line, Contemp. Math., vol. 131, part 2, Amer. Math. Soc., Providence, R.I., pp. 673-677. MR 1175864
  • [S] R. D. Schafer, An introduction to nonassociative algebras, Academic Press, New York and London, 1966. MR 0210757 (35:1643)
  • [T] A. Tillmann, Unzerlegbare Vektorbündel über algebraischen Kurven, Dissertation, FernUniversität, Hagen, 1983.
  • [W] E. Witt, Über ein Gegenbeispiel zum Normensatz, Math. Z. 39 (1934), 462-467. MR 1545510
  • [Z] L. Zagler, Ausgeartete, alternative, quadratische Algebren, Dissertation, Universität München, München, 1968.
  • [Zo] M. Zorn, Alternativkörper und quadratische Systeme, Abh. Math. Sem. Univ. Hamburg 9 (1933), 393-402.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17A75, 14H99, 17A45, 17D05

Retrieve articles in all journals with MSC: 17A75, 14H99, 17A45, 17D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1108613-X
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society