Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Nonwandering structures at the period-doubling limit in dimensions $ 2$ and $ 3$

Authors: Marcy M. Barge and Russell B. Walker
Journal: Trans. Amer. Math. Soc. 337 (1993), 259-277
MSC: Primary 58F12; Secondary 54H20, 58F13
MathSciNet review: 1161425
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Cantor set supporting an adding machine is the simplest nonwandering structure that can occur at the conclusion of a sequence of perioddoubling bifurcations of plane homeomorphisms. In some families this structure is persistent. In this manuscript it is shown that no plane homeomorphism has nonwandering Knaster continua on which the homeomorphism is semiconjugate to the adding machine. Using a theorem of M. Brown, a three-space homeomorphism is constructed which has an invariant set, $ \Lambda $, the product of a Knaster continuum and a Cantor set. $ \Lambda $ is chainable, supports positive entropy but contains only power-of-two periodic orbits. And the homeomorphism restricted to $ \Lambda $ is semiconjugate to the adding machine. Lastly, a zero topological entropy $ {C^\infty }$ disk diffeomorphism is constructed which has large nonwandering structures over a generalized adding machine on a Cantor set.

References [Enhancements On Off] (What's this?)

  • [Bo] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. MR 0274707 (43:469)
  • [Bo-F] R. Bowen and J. Franks, The periodic points of maps of the disk and the interval, Topology 15 (1976), 337-342. MR 0431282 (55:4283)
  • [Br] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483. MR 0115157 (22:5959)
  • [Den] A. Denjoy, Sur les courbes defines par les equations differentielles a la surface du tore, J. Math. Pures. Appl. 11 (1932), 333-375.
  • [F-Y] J. Franks and L-S. Young, A $ {C^2}$ Kupka-Smale diffeomorphism of the disk with no sources or sinks, Proceedings of the Warrick Conference, Lecture Notes in Math., vol. 1007, Springer-Verlag, 1980.
  • [Ga-vS-T] J. Gambaudo, S. van Strien, and C. Tresser, Henon-like maps with strange attractors: there exist $ {C^\infty }$ Kupka-Smale diffeomorphisms on $ {S^2}$ with neither sinks nor sources, Nonlinearity 2 (1989), 287-304. MR 994094 (90b:58154)
  • [Ka] A. Katok, Lyapunov exponents, entropy, and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137-173. MR 573822 (81i:28022)
  • [M] E. Moise, Geometric topology in dimension $ 2$ and $ 3$, Graduate Texts in Math., vol. 47, Springer-Verlag, New York, 1977. MR 0488059 (58:7631)
  • [N] Z. Nitecki, Topological dynamics on the interval, Ergodic Theory and Dynamical Systems. II (A. Katok, ed.), Proceedings Special Year, Maryland 1979-1980, Birkhäuser, Boston, Mass., 1982. MR 670074 (84g:54051)
  • [R] M. Rees, A minimal positive entropy homeomorphism of the $ 2$-torus, J. London Math. Soc. (2)23 (1981), 537-550. MR 616561 (82h:58045)
  • [SI] S. Smale, Dynamical systems and the topological conjugacy problem for diffeomorphisms, Proc. Internat. Congress of Math. (1962), 490-495. MR 0176487 (31:759)
  • [S2] -, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 748-818. MR 0228014 (37:3598)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F12, 54H20, 58F13

Retrieve articles in all journals with MSC: 58F12, 54H20, 58F13

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society