Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An example of a two-term asymptotics for the ``counting function'' of a fractal drum


Authors: Jacqueline Fleckinger-Pellé and Dmitri G. Vassiliev
Journal: Trans. Amer. Math. Soc. 337 (1993), 99-116
MSC: Primary 58G18; Secondary 58G25
DOI: https://doi.org/10.1090/S0002-9947-1993-1176086-7
MathSciNet review: 1176086
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the spectrum of the Dirichlet Laplacian in a bounded domain $ \Omega \subset {\mathbb{R}^n}$ with fractal boundary $ \partial \Omega $. We construct an open set $ \mathcal{Q}$ for which we can effectively compute the second term of the asymptotics of the "counting function" $ N(\lambda ,\mathcal{Q})$, the number of eigenvalues less than $ \lambda $. In this example, contrary to the M. V. Berry conjecture, the second asymptotic term is proportional to a periodic function of In $ \lambda $, not to a constant. We also establish some properties of the $ \zeta $-function of this problem. We obtain asymptotic inequalities for more general domains and in particular for a connected open set $ \mathcal{O}$ derived from $ \mathcal{Q}$. Analogous periodic functions still appear in our inequalities. These results have been announced in $ [{\text{FV}}]$.


References [Enhancements On Off] (What's this?)

  • [Be] M. V. Berry, Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 13-38. MR 573427 (81f:58012)
  • [BS] M. Birman and M. Solomjak, On the principal term of the spectral asymptotics for nonsmooth elliptic problems, Funktsional Anal, i Prilozhen. 4 (1970), no. 4, 1-13; English transl. in Funct. Anal. Appl. 4 (1970). MR 0278126 (43:3857)
  • [BC] J. Brossard and R. Carmona, Can one hear the dimension of a fractal?, Comm. Math. Phys. 104 (1986), 103-122. MR 834484 (87h:58218)
  • [CH] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1, English transl., Interscience, New York, 1953. MR 0065391 (16:426a)
  • [DG] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39-79. MR 0405514 (53:9307)
  • [Fa] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985. MR 867284 (88d:28001)
  • [FM] J. Fleckinger and G. Métivier, Théorie spectrale des opérateurs uniformément elliptiques sur quelques ouverts irréguliers, CR. Acad. Sci. Paris Sér. A 276 (1973), 913-916. MR 0320550 (47:9087)
  • [FV] J. Fleckinger and D. Vasil'ev, Tambour fractal: exemple d'une formule asymptotique a deux termes pour la "fonction de comptage", C.R. Acad. Sci. Paris Sér. I Math. 311 (1990), 867-872. MR 1084044 (91j:35206)
  • [G] C. F. Gauss, Disquisitiones arithmeticae, Leipzig, 1801.
  • [Iv1] V. Ya. Ivrii, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on a manifold with a boundary, Funktsional Anal, i Prilozhen 14 (1980), no. 2, 25-35; English transi, in Funct. Anal. Appl. 14 (1980). MR 575202 (82m:58057)
  • [Iv2] -, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary, Lecture Notes in Math., vol. 1100, Springer-Verlag, Berlin, 1984. MR 771297 (86h:58139)
  • [L1] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465-529. MR 994168 (91j:58163)
  • [L2] -, Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function, Differential Equations and Mathematical Physics, Proc. UAB Internat. Conf. on Math. Phys. and Differential Equations held in Birmingham in March 1990 (C. Bennewitz et al., eds.), Academic Press, New York, 1992, pp. 151-182. MR 1126694 (93f:58239)
  • [LF1] M. L. Lapidus and J. Fleckinger, The vibrations of a fractal drum, Differential Equations, Lecture Notes in Pure and Appl. Math., Dekker, New York and Basel, 1989, pp. 423-436. MR 1021743 (91d:35159)
  • [LF2] -, Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien, C.R. Acad. Sci. Paris Sér. I Math. 306 (1988), 171-175. MR 930556 (89d:35133)
  • [LP] M. L. Lapidus and C. Pomerance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours fractals, C.R. Acad. Sci. Paris Sér. I Math. 310 (1990), 343-348. MR 1046509 (91d:58248)
  • [Ml1] R. B. Melrose, Weyl's conjecture for manifolds with concave boundary, Geometry of the Laplace Operator, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 257-273. MR 573438 (82b:58101)
  • [Ml2] -, The trace of the wave group, Contemp. Math., vol. 27, Amer. Math. Soc., Providence, R.I., 1984, pp. 127-167. MR 741046 (86f:35144)
  • [Mt1] G. Métivier, Etude asymptotique des valeurs propres et de la fonction spectrale de problèmes aux limites, Thèse de Doctorat d'Etat, Mathématiques, Université de Nice, France, 1976.
  • [Mt2] -, Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France Mém. 51-52 (1977), 125-219. MR 0473578 (57:13244)
  • [S1] Yu. G. Safarov, Asymptotics of the spectrum of a boundary value problem with periodic billiard trajectories, Funktsional Anal, i Prilozhen. 21 (1987), no. 4, 90-92; English transl. in Funct. Anal. Appl. 21 (1987). MR 925085 (89m:35168)
  • [S2] -, Precise asymptotics of the spectrum of a boundary value problem and periodic billiards, Izv. Akad. Nauk SSSR Math. Ser. 52 (1988), no. 6, 1230-1251; English transl, in Math. USSR-Izv.
  • [V1] D. Vasil'ev, Asymptotics of the spectrum of a boundary value problem, Trudy Moskov. Mat. Obsch. 49 (1986), 167-237; English transl, in Trans. Moscow Math. Soc., 1987, pp. 173-245. MR 853539 (87k:35192)
  • [V2] -, One can hear the dimension of a connected fractal in $ {\mathbb{R}^2}$, Petkov & Lazarov, Integral Equations and Inverse Problems, Longman Academic, Scientific & Technical, 1991, pp. 270-273.
  • [W1] H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Gött. Nach. (1911), 110-117.
  • [W2] -, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479. MR 1511670

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G18, 58G25

Retrieve articles in all journals with MSC: 58G18, 58G25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1176086-7
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society