Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Quantization of Kähler manifolds. II


Authors: Michel Cahen, Simone Gutt and John Rawnsley
Journal: Trans. Amer. Math. Soc. 337 (1993), 73-98
MSC: Primary 58F06; Secondary 32C17, 53C55, 81S10
DOI: https://doi.org/10.1090/S0002-9947-1993-1179394-9
MathSciNet review: 1179394
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use Berezin's dequantization procedure to define a formal $ \ast$-product on a dense subalgebra of the algebra of smooth functions on a compact homogeneous Kähler manifold $ M$. We prove that this formal $ \ast$-product is convergent when $ M$ is a hermitian symmetric space.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F06, 32C17, 53C55, 81S10

Retrieve articles in all journals with MSC: 58F06, 32C17, 53C55, 81S10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1179394-9
Keywords: Quantization, Kähler manifolds
Article copyright: © Copyright 1993 American Mathematical Society