A subcategory of TOP

Authors:
Alan Dow and Stephen Watson

Journal:
Trans. Amer. Math. Soc. **337** (1993), 825-837

MSC:
Primary 54A35; Secondary 18B30, 54B30

DOI:
https://doi.org/10.1090/S0002-9947-1993-1097165-9

MathSciNet review:
1097165

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the smallest class of topological spaces which contains the converging sequence and which is closed under the operations of taking arbitrary sums, quotients and finite products. We show that if there is a model of set-theory in which there is a measurable cardinal then there is a model in which this class does not contain all topological spaces. In addition, we prove that it is consistent that this class does contain all topological spaces--in fact much more, a large cardinal is needed to produce a model of set theory in which this class is proper.

**[1]**A. V. Arhangel′skiĭ,*Frequency spectrum of a topological space and classification of spaces*, Dokl. Akad. Nauk SSSR**206**(1972), 265–268 (Russian). MR**0394575****[2]**Alan Dow, István Juhász, and William Weiss,*Integer-valued functions and increasing unions of first countable spaces*, Israel J. Math.**67**(1989), no. 2, 181–192. MR**1026562**, https://doi.org/10.1007/BF02937294**[3]**Ryszard Engelking,*Topologia ogólna*, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. MR**0500779**

Ryszard Engelking,*General topology*, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR**0500780****[4]**William G. Fleissner,*The normal Moore space conjecture and large cardinals*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 733–760. MR**776635****[5]**David H. Fremlin,*Measure algebras*, Handbook of Boolean algebras, Vol. 3, North-Holland, Amsterdam, 1989, pp. 877–980. MR**991611****[6]**H. Herrlich,*Categorical topology 1971–1981*, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 279–383. MR**698425****[7]**M. Hušek,*Special classes of compact spaces*, Categorical topology (Proc. Internat. Conf., Free Univ. Berlin, Berlin, 1978), Lecture Notes in Math., vol. 719, Springer, Berlin, 1979, pp. 167–175. MR**544642****[8]**R. Björn Jensen,*The fine structure of the constructible hierarchy*, Ann. Math. Logic**4**(1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR**0309729**, https://doi.org/10.1016/0003-4843(72)90001-0**[9]**V. I. Malyhin,*On the tightness and the Suslin number of**and of a product of spaces*, Soviet Math. Dokl.**4**(1972), 496-499.**[10]**Robert M. Solovay,*Real-valued measurable cardinals*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR**0290961****[11]**A. H. Stone,*Metrizability of decomposition spaces*, Proc. Amer. Math. Soc.**7**(1956), 690–700. MR**0087078**, https://doi.org/10.1090/S0002-9939-1956-0087078-6**[12]**S. Todorcevic,*My fans*, May 1989, preprint.**[13]**-,*My new fan*, May 1989, preprint.**[14]**Stevo Todorčević,*Partitioning pairs of countable ordinals*, Acta Math.**159**(1987), no. 3-4, 261–294. MR**908147**, https://doi.org/10.1007/BF02392561

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54A35,
18B30,
54B30

Retrieve articles in all journals with MSC: 54A35, 18B30, 54B30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1097165-9

Article copyright:
© Copyright 1993
American Mathematical Society