Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Kloosterman sums for Chevalley groups


Author: Romuald Dąbrowski
Journal: Trans. Amer. Math. Soc. 337 (1993), 757-769
MSC: Primary 11L05; Secondary 20G05
MathSciNet review: 1102221
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization of Kloosterman sums to a simply connected Chevalley group $ G$ is discussed. These sums are parameterized by pairs $ (w,t)$ where $ w$ is an element of the Weyl group of $ G$ and $ t$ is an element of a $ {\mathbf{Q}}$-split torus in $ G$. The $ SL(2,{\mathbf{Q}})$-Kloosterman sums coincide with the classical Kloosterman sums and $ SL(r,{\mathbf{Q}})$-Kloosterman sums, $ r \geq 3$, coincide with the sums introduced in [B-F-G,F,S]. Algebraic properties of the sums are proved by root system methods. In particular an explicit decomposition of a general Kloosterman sum over $ {\mathbf{Q}}$ into the product of local $ p$-adic factors is obtained. Using this factorization one can show that the Kloosterman sums corresponding to a toral element, which acts trivially on the highest weight space of a fundamental irreducible representation, splits into a product of Kloosterman sums for Chevalley groups of lower rank.


References [Enhancements On Off] (What's this?)

  • [B] N. Bourbaki, Groupes et algebres de Lie, Chapitres 1, 4-6, 7-8, Hermann, Paris.
  • [B-F-G] Daniel Bump, Solomon Friedberg, and Dorian Goldfeld, Poincaré series and Kloosterman sums for 𝑆𝐿(3,𝑍), Acta Arith. 50 (1988), no. 1, 31–89. MR 945275
  • [Bo] Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
  • [Ch] C. Chevalley, Certain schemas de groupes semisimples, Sem. Bourbaki 1960-1961, Exposé 219, Benjamin, New York, 1966.
  • [D] R. Dabrowski, Integral points in a given Bruhat cell of a Chevalley group, preprint.
  • [D1] Vinay V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), no. 2, 187–198. MR 0435249
  • [D2] Vinay V. Deodhar, Some characterizations of Coxeter groups, Enseign. Math. (2) 32 (1986), no. 1-2, 111–120. MR 850554
  • [D-I] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982/83), no. 2, 219–288. MR 684172, 10.1007/BF01390728
  • [F] Solomon Friedberg, Poincaré series for 𝐺𝐿(𝑛): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates, Math. Z. 196 (1987), no. 2, 165–188. MR 910824, 10.1007/BF01163653
  • [H] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • [K] Bertram Kostant, Groups over 𝑍, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 90–98. MR 0207713
  • [Kl] H. Kloosterman, On the representation of numbers in the form $ ax2 + by2 + cz2 + dt2$, Acta Math. 49 (1926), 407-464.
  • [S] Glenn Stevens, Poincaré series on 𝐺𝐿(𝑟) and Kloostermann sums, Math. Ann. 277 (1987), no. 1, 25–51. MR 884644, 10.1007/BF01457276
  • [St] Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11L05, 20G05

Retrieve articles in all journals with MSC: 11L05, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1102221-2
Article copyright: © Copyright 1993 American Mathematical Society