Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A generalization of the Airy integral for $ f''-z\sp nf=0$

Authors: Gary G. Gundersen and Enid M. Steinbart
Journal: Trans. Amer. Math. Soc. 337 (1993), 737-755
MSC: Primary 34A20; Secondary 30D35, 33E30
MathSciNet review: 1149123
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that the Airy integral is a solution of the Airy differential equation $ f'' - zf = 0$ and that the Airy integral is a contour integral function with special properties. We show that there exist analogous special contour integral solutions of the more general equation $ f'' - {z^n}f = 0$ where $ n$ is any positive integer. Related results are given.

References [Enhancements On Off] (What's this?)

  • [AS] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
  • [A] L. Ahlfors, Complex analysis, 2nd ed., McGraw-Hill, New York, 1966. MR 510197 (80c:30001)
  • [B1] S. Bank, A note on the zeros of solutions of $ w'' + P(z)w = 0$ where $ P$ is a polynomial, Appl. Anal. 25 (1987), 29-41. (Addendum: 30 (1988), 245-248.)
  • [BL] S. Bank and I. Laine, On the oscillation theory of $ f'' + Af = 0$ where A is entire, Trans. Amer. Math. Soc. 273 (1982), 351-363. MR 664047 (83k:34009)
  • [B2] H. Bremmer, Terrestrial radio waves: Theory of propagation, Elsevier, New York, 1949. MR 0032462 (11:295a)
  • [BO] C. Bender and S. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill, New York, 1978. MR 538168 (80d:00030)
  • [E] G. Egorychev, Integral representation and the computation of combinatorial sums, Transl. Math. Monos., Vol. 59, Amer. Math. Soc., Providence, R.I., 1984. MR 736151 (85a:05008)
  • [EMOT] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher transcendental functions, Vols. I and II, McGraw-Hill, New York, 1953. MR 0058756 (15:419i)
  • [FW] K. Försterling and H.-O. Wüster, Über die Reflektion in einem inhomogenen Medium, Ann. Phys. (6) 8 (1950), 129-133. MR 0039890 (12:612j)
  • [G] G. Gundersen, On the real zeros of solutions of $ f'' + A(z)f = 0$ where $ A(z)$ is entire, Ann. Acad. Sci. Fenn. Ser. AI Math. 11 (1986), 275-294. MR 853961 (87j:34013)
  • [H1] G. H. Hardy, On certain definite integrals considered by Airy and by Stokes, Quart. J. 41 (1910), 226-240.
  • [H2] J. Heading, The Stokes phenomenon and certain nth-order differential equations, Proc. Cambridge Philos. Soc. 53 (1957), 399-418. MR 0086193 (19:140e)
  • [HR] S. Hellerstein and J. Rossi, Zeros of meromorphic solutions of second order linear differential equations, Math. Z. 192 (1986), 603-612. MR 847009 (87m:34006)
  • [H3] E. Hille, Lectures on ordinary differential equations, Addison-Wesley, Reading, Mass., 1969. MR 0249698 (40:2939)
  • [IM] J. Irving and N. Mullineux, Mathematics in physics and engineering, Academic Press, New York, 1959. MR 0103145 (21:1928)
  • [JJ] H. Jeffreys and B. Jeffreys, Methods of mathematical physics, 3rd ed., Cambridge Univ. Press, England, 1962.
  • [O] F. Olver, Asymptotics and special functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • [S] Y. Sibuya, Subdominant solutions of the differential equation $ y'' - {\lambda ^2}(x - {a_1})(x - {a_2}) \cdots (x - {a_m})y = 0$, Acta Math. 119 (1967), 235-272. MR 0224930 (37:529)
  • [SH] C. Swanson and V. Headley, An extension of Airy's equation, SIAM J. Appl. Math. 15 (1967), 1400-1412. MR 0224883 (37:482)
  • [W] G. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, England, 1966. MR 1349110 (96i:33010)
  • [WW] E. Whittaker and G. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, England, 1927. MR 1424469 (97k:01072)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34A20, 30D35, 33E30

Retrieve articles in all journals with MSC: 34A20, 30D35, 33E30

Additional Information

Keywords: Airy differential equation, Airy integral, linear differential equation, contour integral solution
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society